Advertisement

Lost in Causality: How Epidemiology’s Counterfactual Causal Inference Revolution Upholds Class, Race and Gender Inequities

  • Carles MuntanerEmail author
  • James R. Dunn
Conference paper

Abstract

We critique empiricism, the dominant epistemology in epidemiology and public health from a scientific realist perspective. Building on our previous work, we also take on the popular counterfactual/potential outcomes epistemology based on its neglect of ontology and shunning causal mechanisms which are reduced to statistical methods (e.g., mediation). We the argue that ontology, epistemology, axiology and ethics constitute a philosophical system in epidemiology, and, in particular in social epidemiology and health equity/social inequalities research that ends up supporting capitalism, patriarchal/gendered and racialize social systems.

Keywords

Scientific realism Empiricism Counterfactual Potential outcomes Ethics Epidemiology Public health Social determinants of health Social inequalities in health Social epidemiology 

References

  1. Archer, M., Bhaskar, R., Collier, A., Lawson, T., & Norrie, A. (2007). Critical realism: Essential readings. London: Routledge.Google Scholar
  2. Bernard, C. (1865). Introduction à L’étude de la Médecine Expérimentale. Paris: Baillière.Google Scholar
  3. Blackburn, S. (2005). The Oxford dictionary of philosophy. Oxford: Oxford University Press.Google Scholar
  4. Broadbent, A., Vandenbroucke, J., & Pearce, N. (2016). Author’s reply to: VanderWeele et al., Chiolero, and Schooling et al. International Journal of Epidemiology, 45(6), 2203–2205.  https://doi.org/10.1093/ije/dyw163.CrossRefGoogle Scholar
  5. Chiolero, A. (2016). Counterfactual and interventionist approach to cure risk factor epidemiology. International Journal of Epidemiology, 45(6), 2202–2203.  https://doi.org/10.1093/ije/dyw159.CrossRefGoogle Scholar
  6. Cooper, R. S., & Kaufman, J. S. (1999). Is there an absence of theory in social epidemiology? The authors respond to Muntaner. American Journal of Epidemiology, 150(2), 127–128.  https://doi.org/10.1093/oxfordjournals.aje.a009971.CrossRefGoogle Scholar
  7. Daniel, R. M., De Stavola, B. L., & Vansteelandt, S. (2016). Commentary: The formal approach to quantitative causal inference in epidemiology: Misguided or misrepresented? International journal of epidemiology, 45(6), 1817–1829.Google Scholar
  8. Dunn, J. R. (2012). Explanation, philosophy and theory in health inequalities research: Towards a critical realist approach. In P. O’Campo & J. R. Dunn (Eds.), Rethinking social epidemiology: Towards a science of change (pp. 23–42). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Gage, S. H., Hickman, M., & Zammit, S. (2016). Association between Cannabis and psychosis: Epidemiologic evidence. Biological Psychiatry, 79(7), 549–556.CrossRefGoogle Scholar
  10. Galea, S., & Link, B. G. (2013a). Six paths for the future of social epidemiology. American Journal of Epidemiology, 178(6), 843–849.  https://doi.org/10.1093/aje/kwt148.CrossRefGoogle Scholar
  11. Galea, A., & Link, B. G. (2013b). Galea and link respond to ‘pathologies of social epidemiology,’ ‘social epidemiology and scientific realism,’ and ‘off-roading with social epidemiology’. American Journal of Epidemiology, 178(6), 864.  https://doi.org/10.1093/aje/kwt147.CrossRefGoogle Scholar
  12. Glass, T. A., Goodman, S. N., Hernán, M. A., & Samet, J. M. (2013). Causal inference in public health. Annual Review of Public Health, 34, 61–75.  https://doi.org/10.1146/annurev-publhealth-031811-124606.CrossRefGoogle Scholar
  13. Glymour, C., & Glymour, M. R. (2014). Commentary: Race and sex are causes. Epidemiology, 25(4), 488–490.CrossRefGoogle Scholar
  14. Hernán, M. A. (2016). Does water kill? A call for less casual causal inferences. Annals of Epidemiology, 26(10), 674–680.  https://doi.org/10.1016/j.annepidem.2016.08.016.CrossRefGoogle Scholar
  15. Howson, C., & Urbach, P. (1993). Scientific reasoning: The Bayesian approach paperback. Retrieved from https://www.amazon.ca/Scientific-Reasoning-Bayesian-Colin- Howson/dp/081269578X
  16. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.). (2000). Principles of neural science. New York: McGraw-Hill.Google Scholar
  17. Kaufman, J. S. (2016). There is no virtue in vagueness. Annals of Epidemiology, 26(10), 683–684.  https://doi.org/10.1016/j.annepidem.2016.08.018.CrossRefGoogle Scholar
  18. Kaufman, J. S., & Cooper, R. S. (1999). Seeking causal explanations in social epidemiology. American Journal of Epidemiology, 150(2), 113–120.  https://doi.org/10.1093/oxfordjournals.aje.a009969.CrossRefGoogle Scholar
  19. Kaufman, J. S., & Poole, C. (2000). Looking back on ‘causal thinking in the health sciences. Annual Review of Public Health, 21(1), 101–119.  https://doi.org/10.1146/annurev.publhealth.21.1.101.CrossRefGoogle Scholar
  20. Krieger, N. (2000). Epidemiology and social sciences: Towards a critical reengagement in the 21st century. Epidemiologic Reviews, 22(1), 2000–2155.CrossRefGoogle Scholar
  21. Krieger, N., & Smith, G. D. (2000). Re:“Seeking causal explanations in social epidemiology”. American Journal of Epidemiology, 151(8), 831–832.Google Scholar
  22. Krieger, N., & Davey Smith, G. (2016). The tale wagged by the DAG: Broadening the scope of causal inference and explanation for epidemiology. International Journal of Epidemiology, 45(6), 1787–1808.  https://doi.org/10.1093/ije/dyw114.CrossRefGoogle Scholar
  23. Magnani, J. W., Norby, F. L., Agarwal, S. K., Soliman, E. Z., Chen, L. Y., Loehr, L. R., & Alonso, A. (2016). Racial differences in atrial fibrillation-related cardiovascular disease and mortality: The atherosclerosis risk in communities (ARIC) study. JAMA Cardiology, 1(4), 433–441.  https://doi.org/10.1001/jamacardio.2016.1025.CrossRefGoogle Scholar
  24. Marmot, M., & Bell, R. (2016). Social inequalities in health: A proper concern of epidemiology. Annals of Epidemiology, 26(4), 238–240.Google Scholar
  25. Mazzarello, P. (1999). A unifying concept: The history of cell theory. Nature Cell Biology, 1(1), E13–E15.CrossRefGoogle Scholar
  26. Muntaner, C. (1999). Social mechanisms, race, and social epidemiology. American Journal of Epidemiology, 150(2), 121–126.CrossRefGoogle Scholar
  27. Muntaner, C. (2013). Invited commentary: On the future of social epidemiology—A case for scientific realism. American Journal of Epidemiology, 178(6), 852–857.  https://doi.org/10.1093/aje/kwt143.CrossRefGoogle Scholar
  28. Muntaner, C., & O’Campo, P. J. (1993). A critical appraisal of the demand/control model of the psychosocial work environment: Epistemological, social, behavioural and class considerations. Social Science and Medicine, 36(11), 1509–1517.CrossRefGoogle Scholar
  29. Muntaner, C., Nieto, F. J., & O’Campo, P. (1996). The bell curve: On race, social class, and epidemiological research. American Journal of Epidemiology, 1444(6), 531–536.CrossRefGoogle Scholar
  30. Muntaner, C., Nieto, F. J., & O’Campo, P. (1997). Additional clarification re: ‘The bell curve: On race, social class, and epidemiological research’. American Journal of Epidemiology, 146(7), 607–608.CrossRefGoogle Scholar
  31. Muntaner, C., Edwin, N. G., & Chung, H. (2012). Better health: An analysis of public policy and programming focusing on the determinants of health and health outcomes that are effective in achieving the healthiest populations, Canadian health service research foundation. Retrieved from https://www.cfhi-fcass.ca/sf-docs/default- source/commissioned-research-reports/Muntaner-BetterCare-EN.pdf?sfvrsn=0
  32. Muntaner, C., Edwin, N. G., Chung, H., & Prins, S. J. (2015). Two decades of neo- Marxist class analysis and health inequalities: A critical reconstruction. Social Theory and Health, 13, 267–287.CrossRefGoogle Scholar
  33. Muntaner, C., Eaton, W. W., Diala, C., Kessler, R. C., & Sorlie, P. D. (1998). Social class, assets, organizational control and the prevalence of common groups of psychiatric disorders. Social Science and Medicine, 47(12), 20143–22053.CrossRefGoogle Scholar
  34. Navarro, V. (1982). The labor process and health: A historical materialist interpretation. International journal of Health Services, 12(1), 5–29.CrossRefGoogle Scholar
  35. Navarro, V. (1991). Production and the welfare state: The political context of reforms. International Journal of Health Services, 21(4), 585–614.MathSciNetCrossRefGoogle Scholar
  36. Pearl, J. (2018). Comments on: The tale wagged by the dag. International Journal of Epidemiology, 47(3), 1002–1004.CrossRefGoogle Scholar
  37. Prescott, W. H. (2018). Revival: History of the conquest of Mexico (1886) with a preliminary view of the ancient Mexican civilization and the life of the conqueror, Hernando Cortes (2nd ed.). London: Routledge.Google Scholar
  38. Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern epidemiology. Retrieved from https://www.amazon.ca/Modern-Epidemiology-Kenneth-Rothman-2008-03- 14/dp/B01FKTHY18
  39. Sayer, A. (1992). Methods in social science: A realistic approach, Methods in social science (2nd ed.). London: Routledge.Google Scholar
  40. Sayer, A. (1999). Bourdieu, Smith and disinterested judgement. The Sociological Review Foundation, 47(3), 1–13.Google Scholar
  41. Schooling, C. M., Chow, C. K., & Young, S. A. (2016). Causality and causal inference in epidemiology: We need also to address causes of effects. International Journal of Epidemiology, 45(6), 2200–2201.  https://doi.org/10.1093/ije/dyw160.CrossRefGoogle Scholar
  42. Schwartz, S., Gatto, N. M., & Campbell, U. B. (2016). Causal identification: A charge of epidemiology in danger of marginalization. Annals of Epidemiology, 26(10), 669–673.  https://doi.org/10.1016/j.annepidem.2016.03.013.CrossRefGoogle Scholar
  43. Smart, J. J. (1963). Philosophy and scientific realism. Atlantic Highlands, NJ: Humanities Press.Google Scholar
  44. Stringhini, S., Carmeli, C., Jokela, M., Avendaño, M., Muennig, P., Guida, F., Ricceri, F., d’Errico, A., Barros, H., Bochud, M., Chadeau-Hyam, M., Clavel-Chapelon, F., Costa, G., Delpierre, C., Fraga, S., Goldberg, M., Giles, G. G., Krogh, V., Kelly-Irving, M., Layte, R., Lasserre, A. M., Marmot, M. G., Preisig, M., Shipley, M. J., Vollenweider, P., Zins, M., Kawachi, I., Steptoe, A., Mackenbach, J. P., Vineis, P., Kivimäki, M., & LIFEPATH Consortium. (2017). Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: A multicohort study and meta-analysis of 1·7 million men and women. Lancet, 389(10075), 1229–1237.CrossRefGoogle Scholar
  45. Vandenbroucke, J. P., Broadbent, A., & Pearce, N. (2016). Causality and causal inference in epidemiology: The need for a pluralistic approach. International Journal of Epidemiology, 45(6), 1776–1786.CrossRefGoogle Scholar
  46. VanderWeele, T. J., Hernán, M. A., Tchetgen, E. J., & Robins, J. M. (2016). Re: Causality and causal inference in epidemiology: The need for a pluralistic approach. International Journal of Epidemiology, 45(6), 2199–2200.  https://doi.org/10.1093/ije/dyw162.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of TorontoTorontoCanada
  2. 2.McMaster UniversityHamiltonCanada

Personalised recommendations