Functional Path Optimisation for Exploration in Continuous Occupancy Maps

  • Gilad FrancisEmail author
  • Lionel Ott
  • Fabio Ramos
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 10)


Autonomous exploration is a complex task where the robot moves through an unknown environment with the goal of mapping it. The desired output of such a process is a sequence of paths that efficiently and safely minimise the uncertainty of the resulting map. However, optimising over the entire space of possible paths is computationally intractable. Therefore, most exploration methods relax the general problem by optimising a simpler one, for example finding the single next best view. In this work, we formulate exploration as a variational problem which allows us to directly optimise in the space of trajectories using functional gradient methods, searching for the Next Best Path (NBP). We take advantage of the recently introduced Hilbert maps to devise an information-based functional that can be computed in closed-form. The resulting trajectories are continuous and maximise safety as well as mutual information. In experiments we verify the ability of the proposed method to find smooth and safe paths and compare these results with other exploration methods.


Robotic Exploration Functional Gradient Path Planning 


  1. 1.
    Charrow, B., Kahn, G., Patil, S., Liu, S., Goldberg, K., Abbeel, P., Michael, N., Kumar, V.: Information-theoretic planning with trajectory optimization for dense 3D mapping. In: Proceeding of Robotics: Science and Systems (2015)Google Scholar
  2. 2.
    Dong, J., Mukadam, M., Dellaert, F., Boots, B.: Motion planning as probabilistic inference using gaussian processes and factor graphs. In: Proceeding of Robotics: Science and Systems (2016)Google Scholar
  3. 3.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  4. 4.
    Elfes, A.: Robot navigation: integrating perception, environmental constraints and task execution within a probabilistic framework. In: Reasoning with Uncertainty in Robotics (1996)Google Scholar
  5. 5.
    Francis, G., Ott, L., Marchant, R., Ramos, F.: Occupancy map building through bayesian exploration. Int. J. Robot. Res. 38(7), 769–792 (2019)Google Scholar
  6. 6.
    Francis, G., Ott, L., Ramos, F.: Stochastic functional gradient for motion planning in continuous occupancy maps. In: Proceeding of the IEEE International Conference on Robotics and Automation (2017)Google Scholar
  7. 7.
    Francis, G., Ott, L., Ramos, F.: Stochastic Functional Gradient Path Planning in Occupancy Maps (2017). arXiv:1703.00227
  8. 8.
    González-Baños, H.H., Latombe, J.-C.: Navigation strategies for exploring indoor environments. Int. J. Robot. Res. 21(10–11), 829–848 (2002)CrossRefGoogle Scholar
  9. 9.
    Holz, D., Basilico, N., Amigoni, F., Behnke, S.: A comparative evaluation of exploration strategies and heuristics to improve them. In: Proceedings of the European Conference on Mobile Robots (2011)Google Scholar
  10. 10.
    Jadidi, M.G., Miro, J.V., Valencia, R., Andrade-Cetto, J.: Exploration on continuous gaussian process frontier maps. In: Proceedings of the IEEE International Conference on Robotics and Automation (2014)Google Scholar
  11. 11.
    Jadidi, M.G., Miro, J.V., Dissanayake, G.: Mutual information-based exploration on continuous occupancy maps. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2015)Google Scholar
  12. 12.
    Juliá, M., Gil, A., Reinoso, O.: A comparison of path planning strategies for autonomous exploration and mapping of unknown environments. Auton. Robot. 33(4), 427–444 (2012)CrossRefGoogle Scholar
  13. 13.
    Julian, B.J., Karaman, S., Rus, D.: On mutual information-based control of range sensing robots for mapping applications. Int. J. Robot. Res. 33(10), 1375–1392 (2014)CrossRefGoogle Scholar
  14. 14.
    Lauri, M., Ritala, R.: Planning for Robotic Exploration based on Forward Simulation (2015). arXiv:1502.02474
  15. 15.
    Marchant, R., Ramos, F.: Bayesian optimisation for informative continuous path planning. In: Proceedings of the IEEE International Conference on Robotics and Automation (2014)Google Scholar
  16. 16.
    Marinho, Z., Boots, B., Dragan, A., Byravan, A., Gordon, G.J., Srinivasa, S.: Functional gradient motion planning in reproducing kernel hilbert spaces. In: Proceedings of Robotics Science and Systems (2016)Google Scholar
  17. 17.
    Mukadam, M., Yan, X., Boots, B.: Gaussian process motion planning. In: Proceedings of the IEEE International Conference on Robotics and Automation (2016)Google Scholar
  18. 18.
    O’Callaghan, S.T., Ramos, F.T.: Gaussian process occupancy maps. Int. J. Robot. Res. 31(1), 42–62 (2012)CrossRefGoogle Scholar
  19. 19.
    Ramos, F., Ott, L.: Hilbert maps: scalable continuous occupancy mapping with stochastic gradient descent. In: Proceedings of Robotics: Science and Systems (2015)Google Scholar
  20. 20.
    Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Stachniss, C.: Robotic Mapping and Exploration. Springer (2009)Google Scholar
  22. 22.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press, Cambridge (2005)Google Scholar
  23. 23.
    Vallvé, J., Andrade-Cetto, J.: Potential information fields for mobile robot exploration. Robot. Auton. Syst. 69, 68–79 (2015)CrossRefGoogle Scholar
  24. 24.
    Whaite, P., Ferrie, F.P.: Autonomous exploration: driven by uncertainty. IEEE Trans. Pattern Anal. Mach. Intell. 19(3), 193–205 (1997)CrossRefGoogle Scholar
  25. 25.
    Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (1997)Google Scholar
  26. 26.
    Yang, K., Keat Gan, S., Sukkarieh, S.: A gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV. Adv. Robot. 27(6), 431–443 (2013)Google Scholar
  27. 27.
    Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klingensmith, M., Dellin, C.M., Bagnell, J.A., Srinivasa, S.S.: CHOMP: covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9–10), 1164–1193 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Computer ScienceThe University of SydneySydneyAustralia

Personalised recommendations