Advertisement

Multirobot Cooperative Localization Algorithm with Explicit Communication and Its Topology Analysis

  • Tsang-Kai ChangEmail author
  • Shengkang Chen
  • Ankur Mehta
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 10)

Abstract

This paper proposes a new cooperative localization algorithm that separates communication and observation into independent mechanisms. While existing algorithms acknowledge observations between robots are crucial in cooperative localization schemes, communication is considered only an auxiliary role in observation update but not explicitly stated. However, such algorithms require the communication to be available whenever needed, and it is difficult to consider the effect of communication imperfection, which is unavoidable in real systems. We propose the Global State–Covariance Intersection (GS-CI) multirobot cooperative localization algorithm that can independently update localization estimates through both observation and communication steps. We also provide a theoretical upper bound of the resulting estimation uncertainty based on observation and communication topologies. Simulations using generated data validates the theoretical analysis, and shows the comparable performance to the centralized equivalent approach with less communication together with real-world data.

References

  1. 1.
    Arambel, P.O., Rago, C., Mehra, R.K.: Covariance intersection algorithm for distributed spacecraft state estimation. In: Proceedings of the 2001 American Control Conference, vol. 6, pp. 4398–4403 (2001)Google Scholar
  2. 2.
    Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM Algorithm. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3562–3568 (2006)Google Scholar
  3. 3.
    Carrillo-Arce, L.C., Nerurkar, E.D., Gordillo, J.L., Roumeliotis, S.I.: Decentralized multi-robot cooperative localization using covariance intersection. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1412–1417 (2013)Google Scholar
  4. 4.
    Cattivelli, F.S., Sayed, A.H.: Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Autom. Control 55(9), 2069–2084 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, L., Arambel, P.O., Mehra, R.K.: Estimation under unknown correlation: Covariance intersection revisited. IEEE Trans. Autom. Control 47(11), 1879–1882 (2002)Google Scholar
  6. 6.
    Hu, J., Xie, L., Zhang, C.: Diffusion Kalman filtering based on covariance intersection. IEEE Trans. Signal Process. 60(2), 891–902 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kailath, T., Sayed, A.H., Hassibi, B.: Linear Estimation. Pearson (2000)Google Scholar
  8. 8.
    Karam, N., Chausse, F., Aufrere, R., Chapuis, R.: Cooperative multi-vehicle localization. In: 2006 IEEE Intelligent Vehicles Symposium, pp. 564–570 (2006)Google Scholar
  9. 9.
    Karam, N., Chausse, F., Aufrere, R., Chapuis, R.: Localization of a group of communicating vehicles by state exchange. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 519–524 (2006)Google Scholar
  10. 10.
    Kia, S.S., Rounds, S., Martanez, S.: Cooperative localization under message dropouts via a partially decentralized EKF scheme. In: 2015 IEEE International Conference on Robotics and Automation, pp. 5977–5982 (2015)Google Scholar
  11. 11.
    Kia, S.S., Rounds, S.F., Martnez, S.: A centralized-equivalent decentralized implementation of Extended Kalman Filters for cooperative localization. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3761–3766 (2014)Google Scholar
  12. 12.
    Leung, K.Y., Halpern, Y., Barfoot, T.D., Liu, H.H.: The UTIAS multi-robot cooperative localization and mapping dataset. Int. J. Robot. Res. 30(8), 969–974 (2011)CrossRefGoogle Scholar
  13. 13.
    Li, H., Nashashibi, F., Yang, M.: Split covariance intersection filter: Theory and its application to vehicle localization. IEEE Trans. Intell. Transp. Syst. 14(4), 1860–1871 (2013)Google Scholar
  14. 14.
    Luft, L., Schubert, T., Roumeliotis, S.I., Burgard, W.: Recursive decentralized collaborative localization for sparsely communicating robots. In: Proceedings of Robotics: Science and Systems (2016)Google Scholar
  15. 15.
    Mourikis, A.I., Roumeliotis, S.I.: Performance analysis of multirobot cooperative localization. IEEE Trans. Robot. 22(4), 666–681 (2006)CrossRefGoogle Scholar
  16. 16.
    Reinhardt, M., Noack, B., Arambel, P.O., Hanebeck, U.D.: Minimum covariance bounds for the fusion under unknown correlations. IEEE Signal Process. Lett. 22(9), 1210–1214 (2015)CrossRefGoogle Scholar
  17. 17.
    Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002)CrossRefGoogle Scholar
  18. 18.
    Saeedi, S., Trentini, M., Seto, M., Li, H.: Multiple-robot simultaneous localization and mapping: A review. J. Field Robot. 33(1), 3–46 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations