Object Shape Estimation Through Touch-Based Continuum Manipulation

  • Huitan MaoEmail author
  • Jing Xiao
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 10)


Object shape information is crucial for many robotic tasks. In this paper, we present an approach of estimating the shapes of unknown objects through touch-based continuum manipulation. Comparing to existing work for shape estimation that uses a conventional robot end-effector to make contact with the object, our approach offers the following advantages: (1) collecting contact points more efficiently through whole-arm wraps using a continuum manipulator; (2) explicitly taking advantage of the continuum robot proprioception to estimate the object shape both more efficiently and more accurately. Our experiments on objects with various shapes demonstrate the effectiveness of the approach.



This work is supported by the US NSF grant IIP-1439695.


  1. 1.
    Bierbaum, A., Rambow, M., Asfour, T., Dillmann, R.: A potential field approach to dexterous tactile exploration of unknown objects. In: Proceedings of IEEE International Conference on Humanoid Robots (2008)Google Scholar
  2. 2.
    Burgner-Kahrs, J., Rucker, D.C., and Choset, H.: Continuum robots for medical applications: a survey. IEEE TRO 31(6) (2015)Google Scholar
  3. 3.
    Caccamo, S., Bekiroglu, Y., Ek, C.H., Kragic, D.: Active exploration using gaussian random fields and gaussian process implicit surfaces. In: Proceedings of IEEE/RSJ IROS (2016)Google Scholar
  4. 4.
    Choi, C., Christensen, H.I.: 3D pose estimation of daily objects using an RGB-D camera. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)Google Scholar
  5. 5.
    Dragiev, S., Toussaint, M., Gienger, M.: Gaussian process implicit surfaces for shape estimation and grasping. In: Proceedings of IEEE ICRA (2011)Google Scholar
  6. 6.
    Frazelle, C.G., Kapadia, A.D., Fry, K.E., Walker, I.D.: Teleoperation mappings from rigid link robots to their extensible continuum counterparts. In: Proceedings of IEEE ICRA (2016)Google Scholar
  7. 7.
    Gerardo-Castro, M.P., Peynot, T., Ramos, F.: Laser-radar data fusion with gaussian process implicit surfaces In: Field and Service Robotics. Springer, Cham (2015)Google Scholar
  8. 8.
    Ibrayev, R., Jia, Y.-B.: Recognition of curved surfaces from one-dimensional tactile data. IEEE Trans. Autom. Sci. Eng. 9(3) (2012)Google Scholar
  9. 9.
    Jamali, N., Ciliberto, C., Rosasco, L., Natale, L.: Active perception: building objects’ models using tactile exploration. In: Proceedings of IEEE International Conference on Humanoid Robots (Humanoids) (2016)Google Scholar
  10. 10.
    Jia, Y.-B., Tian, J.: Surface patch reconstruction from one-dimensional tactile data. IEEE Trans. Autom. Sci. Eng. 7(2) (2010)Google Scholar
  11. 11.
    Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE TRO 22(1) (2006)Google Scholar
  12. 12.
    Li, Q., Schürmann, C., Haschke, R., Ritter, H.J.: A control framework for tactile servoing. In: Robotics: Science and systems (2013)Google Scholar
  13. 13.
    Li, J., Teng, Z., Xiao, J.: Can a continuum manipulator fetch an object in an unknown cluttered space? IEEE Robot. Autom. Lett. (2017)Google Scholar
  14. 14.
    Li, J., Xiao, J.: A general formulation and approach to constrained, continuum manipulation. Adv. Robot. 29(13) (2015)Google Scholar
  15. 15.
    Li, J., Xiao, J.: An efficient algorithm for real time collision detection involving a continuum manipulator with multiple uniform-curvature sections. Robotica 34(7) (2016)Google Scholar
  16. 16.
    Li, J., Xiao, J.: Determining grasping configurations for a spatial continuum manipulator. In: Proceedings of IEEE/RSJ IROS (2011)Google Scholar
  17. 17.
    Li, J., Xiao, J.: Progressive planning of continuum grasping in cluttered space. IEEE TRO 32(3) (2016)Google Scholar
  18. 18.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. In: Proceedings of ACM Siggraph Computer Graphics (1987)Google Scholar
  19. 19.
    Mao, H., Teng, Z., Xiao, J.: Progressive object modeling with a continuum manipulator in unknown environments. In: Proceedings of IEEE ICRA (2017)Google Scholar
  20. 20.
    Mao, H., Zhang, M.M., Xiao, J., Daniilidis, K.: Shape-based object classification and recognition through continuum manipulation. In: Proceedings of IEEE/RSJ IROS (2017)Google Scholar
  21. 21.
    Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: real-time dense surface mapping and tracking. In: Proceedings of IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2011)Google Scholar
  22. 22.
    Okamura, A.M., Curkosky, M.: Feature-guided exploration with a robotic finger. In: Proceedings of IEEE ICRA (2001)Google Scholar
  23. 23.
    Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)Google Scholar
  24. 24.
    Robinson, G., Davies, J.B.C.: Continuum robots-a state of the art. In: Proceedings of IEEE ICRA (1999)Google Scholar
  25. 25.
    Singh, A., Sha, J., Narayan, K.S., Achim, T., Abbeel, P.: Bigbird: a large-scale 3D database of object instances. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (2014)Google Scholar
  26. 26.
    Sommer, N., Li, M., Billard, A.: Bimanual compliant tactile exploration for grasping unknown objects. In: Proceedings of IEEE ICRA (2014)Google Scholar
  27. 27.
    Teng, Z., Mao, H., Xiao, J.: Automatic object modeling through integrating perception and robotic manipulation. In: Proceedings of International Symposium on Experimental Robotics (ISER) (2016)Google Scholar
  28. 28.
    Walker, I.D.: Continuous backbone “continuum” robot manipulators. ISRN Robot. 2013 (2013)Google Scholar
  29. 29.
    Webster III, R.J., Romano, J.M., Cowan, N.J.: Mechanics of precurved-tube continuum robots. IEEE Trans. Robot.(TRO) (2009)Google Scholar
  30. 30.
    Williams, O., Fitzgibbon, A.: Gaussian process implicit surfaces. Gaussian Proc. Pract. (2007)Google Scholar
  31. 31.
    Yi, Z., Calandra, R., Veiga, F., van Hoof, H., Hermans, T., Zhang, Y., Peters, J.: Active tactile object exploration using gaussian processes. In: Proceedings of IEEE/RSJ IROS (2016)Google Scholar
  32. 32.
    Zhang, M.M., Kennedy, M., Hsieh, M., Daniilidis, K.: A triangle histogram for object classification by tactile sensing. In: Proceedings of IEEE/RSJ IROS (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations