Advertisement

Viewing Robot Navigation in Human Environment as a Cooperative Activity

  • Harmish KhambhaitaEmail author
  • Rachid Alami
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 10)

Abstract

We claim that navigation in human environments can be viewed as cooperative activity especially in constrained situations. Humans concurrently aid and comply with each other while moving in a shared space. Cooperation helps pedestrians to efficiently reach their own goals and respect conventions such as the personal space of others. To meet human comparable efficiency, a robot needs to predict the human trajectories and plan its own trajectory correspondingly in the same shared space. In this work, we present a navigation planner that is able to plan such cooperative trajectories, simultaneously enforcing the robot’s kinematic constraints and avoiding other non-human dynamic obstacles. Using robust social constraints of projected time to a possible future collision, compatibility of human-robot motion direction, and proxemics, our planner is able to replicate human-like navigation behavior not only in open spaces but also in confined areas. Besides adapting the robot trajectory, the planner is also able to proactively propose co-navigation solutions by jointly computing human and robot trajectories within the same optimization framework. We demonstrate richness and performance of the cooperative planner with simulated and real world experiments on multiple interactive navigation scenarios.

Notes

Acknowledgements

This work is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 688147 (MuMMER project).

References

  1. 1.
    Sebanz, N., Bekkering, H., Knoblich, G.: Joint action: bodies and minds moving together. Trends Cogn. Sci. 10(2), 70–76 (2006)CrossRefGoogle Scholar
  2. 2.
    Lemaignan, S., Warnier, M., Sisbot, E.A., Clodic, A., Alami, R.: Artificial cognition for social human-robot interaction: an implementation. Artif. Intell. 247 (2017)Google Scholar
  3. 3.
    Waldhart, J., Gharbi, M., Alami, R.: Planning handovers involving humans and robots in constrained environment. In: International Conference on Intelligent Robots and Systems (2015)Google Scholar
  4. 4.
    Shah, J., Wiken, J., Williams, B.C., Breazeal, C.: Improved human-robot team performance using chaski, a human-inspired plan execution system. In: International Conference on Human-Robot Interaction, pp. 29–36 (2011)Google Scholar
  5. 5.
    Knoblich, G., Butterfill, S., Sebanz, N.: Psychological research on joint action. Psychol. Learn. Motiv. 54, 59–101 (2011)CrossRefGoogle Scholar
  6. 6.
    Pacherie, E.: The phenomenology of joint action: self-agency vs. joint-agency. In: Axel, S. (ed.) Joint Attention: New Developments (2012)Google Scholar
  7. 7.
    Clodic, A., Alami, R., Chatila, R.: Key elements for human-robot joint action. Sociable Robots and the Future of Social Relations, vol. 273, pp. 23–33 (2014)Google Scholar
  8. 8.
    Tomasello, M., Carpenter, M., Call, J., Behne, T., Moll, H.: Understanding and sharing intentions: the origins of cultural cognition. Behav. Brain Sci. 28 (2005)Google Scholar
  9. 9.
    Bratman, M.E.: Shared intention. Ethics 104(1), 97–113 (1993)CrossRefGoogle Scholar
  10. 10.
    Clark, H.H., Schreuder, R., Buttrick, S.: Common ground at the understanding of demonstrative reference. J. Verbal Learn. Verbal Behav. 22, pp. 245–258 (1983)Google Scholar
  11. 11.
    Watanabe, A., Ikeda, T., Morales, Y., Shinozawa, K., Miyashita, T., Hagita, N.: Communicating robotic navigational intentions. In: International Conference on Intelligent Robots and Systems, pp. 5763–5769 (2015)Google Scholar
  12. 12.
    Hall, E.T.: The Hidden Dimension: Man’s Use of Space in Public and Private (1966)Google Scholar
  13. 13.
    Rios-Martinez, J., Spalanzani, A., Laugier, C.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2014)CrossRefGoogle Scholar
  14. 14.
    Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: a survey. Robot. Auton. Syst. 61(12), 1726–1743 (2013)CrossRefGoogle Scholar
  15. 15.
    Sisbot, E.A., Marin-Urias, L.F., Alami, R., Siméon, T.: A human aware mobile robot motion planner. IEEE Trans. Robot. 23(5), 874–883 (2007)CrossRefGoogle Scholar
  16. 16.
    Kruse, T., Kirsch, A., Khambhaita, H., Alami, R.: Evaluating directional cost models in navigation. In: International Conference on Human-Robot Interaction, pp. 350–357 (2014)Google Scholar
  17. 17.
    Kruse, T., Basili, P., Glasauer, S., Kirsch, A.: Legible robot navigation in the proximity of moving humans. In: Workshop on Advanced Robotics and Its Social Impacts, pp. 83–88 (2012)Google Scholar
  18. 18.
    Kuderer, M., Kretzschmar, H., Sprunk, C., Burgard, W.: Feature-based prediction of trajectories for socially compliant navigation. In: Robotics: Science and Systems (2012)Google Scholar
  19. 19.
    Ferrer, G., Sanfeliu, A.: Proactive kinodynamic planning using the extended social force model and human motion prediction in urban environments. In: International Conference on Intelligent Robots and Systems, pp. 1730–1735 (2014)Google Scholar
  20. 20.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)CrossRefGoogle Scholar
  21. 21.
    Alili, S., Alami, R., Montreuil, V.: A task planner for an autonomous social robot. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds.) Distributed Autonomous Robotic Systems, vol. 8, pp. 335–344 (2009)Google Scholar
  22. 22.
    Lallement, R., de Silva, L., Alami, R.: HATP: an HTN planner for robotics, CoRR, arXiv:abs/1405.5345 (2014)
  23. 23.
    Mainprice, J., Gharbi, M., Siméon, T., Alami, R.: Sharing effort in planning human-robot handover tasks. In: International Symposium on Robot and Human Interactive Communication, pp. 764–770 (2012)Google Scholar
  24. 24.
    Ferrer, G., Sanfeliu, A.: Multi-objective cost-to-go functions on robot navigation in dynamic environments. In: International Conference on Intelligent Robots and Systems, pp. 3824–3829 (2015)Google Scholar
  25. 25.
    Bordallo, A., Previtali, F., Nardelli, N., Ramamoorthy, S.: Counterfactual reasoning about intent for interactive navigation in dynamic environments. In: International Conference on Intelligent Robots and Systems, pp. 2943–2950 (2015)Google Scholar
  26. 26.
    Nagariya, A., Gopalakrishnan, B., Singh, A.K., Gupta, K., Krishna, K.M.: Mobile robot navigation amidst humans with intents and uncertainties: a time scaled collision cone approach. In: Conference on Decision and Control, pp. 2773–2779 (2015)Google Scholar
  27. 27.
    Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In: International Conference on Robotics and Automation, pp. 802–807 (1993)Google Scholar
  28. 28.
    Khatib, M., Jaouni, H., Chatila, R., Laumond, J.-P.: Dynamic path modification for car-like nonholonomic mobile robots. In: International Conference on Robotics and Automation, pp. 2920–2925 (1997)Google Scholar
  29. 29.
    Rösmann, C., Feiten, W., Woesch, T., Hoffmann, F., Bertram, T.: Trajectory modification considering dynamic constraints of autonomous robots. In: German Conference on Robotics, pp. 1–6 (2012)Google Scholar
  30. 30.
    Khambhaita, H., Alami, R.: A human-robot cooperative navigation planner. In: Companion of the International Conference on Human-Robot Interaction, pp. 161–162 (2017)Google Scholar
  31. 31.
    Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F., Bertram, T.: Efficient trajectory optimization using a sparse model. In: European Conference on Mobile Robots, pp. 138–143 (2013)Google Scholar
  32. 32.
    Bohannon, R.W.: Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26(1), 15–19 (1997)CrossRefGoogle Scholar
  33. 33.
    Kümmerle, R., Grisetti, G., Strasdat, H., Konolige,K., Burgard, W.: G2o: a general framework for graph optimization. In: International Conference on Robotics and Automation, pp. 3607–3613 (2011)Google Scholar
  34. 34.
    Davis, T.: Direct Methods for Sparse Linear Systems (2006)Google Scholar
  35. 35.
    Karamouzas, I., Skinner, B., Guy, S.J.: Universal power law governing pedestrian interactions. Phys. Rev. Lett. 113(23), 238701 (2014)CrossRefGoogle Scholar
  36. 36.
    Marder-Eppstein, E.: move\(\_\)base: A ROS package that lets you move a robot to desired positions using the navigation stackGoogle Scholar
  37. 37.
    Lu, D.V., Hershberger, D., Smart, W.D.: Layered costmaps for context-sensitive navigation. In: International Conference on Intelligent Robots and Systems, pp. 709–715 (2014)Google Scholar
  38. 38.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)CrossRefGoogle Scholar
  39. 39.
    Khambhaita, H., Alami, R.: Assessing the social criteria for human-robot collaborative navigation: a comparison of human-aware navigation planners. In: International Symposium on Robot and Human Interactive Communication (2017)Google Scholar
  40. 40.
    Khambhaita, H., Rios-Martinez, J., Alami, R.: Head-body motion coordination for human aware robot navigation. In: International Workshop on Human-Friendlly Robotics (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.LAAS-CNRSUniversité de Toulouse, CNRSToulouseFrance

Personalised recommendations