“Should Robots Feel Pain?”—Towards a Computational Theory of Pain in Autonomous Systems

  • Trevor RichardsonEmail author
  • Indranil Sur
  • Heni Ben Amor
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 10)


We argue that investigating the biological mechanisms underlying the sensation of pain in humans and animals may lead to fundamental new insights about robot cognition, motor skill acquisition, autonomy, memory, and system integration. Despite the fact that pain plays a central role in the life of humans and more complex animals, it has received only peripheral attention in the field of robotics. In this paper, we discuss the complex web of mechanisms and functions underlying biological pain sensation and anticipation. Next, we examine the opportunities and challenges that arise when studying computational frameworks that mimic nociceptive pathways. Further, we propose two initial benchmark tasks that may be leveraged to accelerate such research. Our main objectives are to highlight a critical knowledge gap in our understanding of intelligent physical systems and to identify a new and promising avenue for further research.


  1. 1.
    Descartes, R.: Treatise on man. The Nature of Life: Classical and Contemporary Perspectives from Philosophy and Science, pp. 15–20 (2010)Google Scholar
  2. 2.
    Legrain, V., Iannetti, G.D., Plaghki, L., Mouraux, A.: The pain matrix reloaded: a salience detection system for the body. Prog. Neurobiol. 93(1), 111–124 (2011). ISSN 0301-0082.
  3. 3.
    Gramsch, C., Kattoor, J., Icenhour, A., Forsting, M., Schedlowski, M., Gizewski, E.R., Elsenbruch, S.: Learning pain-related fear: neural mechanisms mediating rapid differential conditioning, extinction and reinstatement processes in human visceral pain. Neurobiol. Learn. Mem. 116, 36–45 (2014)Google Scholar
  4. 4.
    Singer, T., Seymour, B., O’doherty, J., Kaube, H., Dolan, R.J., Frith, C.D.: Empathy for pain involves the affective but not sensory components of pain. Science 303(5661), 1157–1162 (2004)Google Scholar
  5. 5.
    Haddadin, S.: Towards Safe Robots: Approaching Asimovs 1st Law, vol. 90. Springer (2013)Google Scholar
  6. 6.
    Sur, I., Amor, H.B.: Robots that anticipate pain: anticipating physical perturbations from visual cues through deep predictive models. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5541–5548. IEEE (2017)Google Scholar
  7. 7.
    Kuehn, J., Haddadin, S.: An artificial robot nervous system to teach robots how to feel pain and reflexively react to potentially damaging contacts. IEEE Robot. Autom. Lett. 2(1), 72–79 (2017)CrossRefGoogle Scholar
  8. 8.
    Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge, MA, USA (1998)Google Scholar
  9. 9.
    Ranney, D.: Anatomy of pain. In: Ontario Inter-Urban Pain Conference, Waterloo, vol. 29 (1996)Google Scholar
  10. 10.
    Nagasako, E.M., Oaklander, A.L., Dworkin, R.H.: Congenital insensitivity to pain: an update. Pain 101(3), 213–219 (2003)Google Scholar
  11. 11.
    Dawkins, R.: River Out of Eden: A Darwinian View of Life. Basic Books (2008)Google Scholar
  12. 12.
    Craig, A.D.: A new view of pain as a homeostatic emotion. Trends Neurosci. 26(6), 303–307 (2003)CrossRefGoogle Scholar
  13. 13.
    Skibinsky, C.G.: Changes in store for the livestock industry-canada’s recurring proposed animal cruelty amendments. Sask. L. Rev. 68, 173 (2005)Google Scholar
  14. 14.
    Apkarian, A.V.: Pain perception in relation to emotional learning. Curr. Opin. Neurobiol. 18(4):464–468 (2008)Google Scholar
  15. 15.
    Beese, A., Morley, S.: Memory for acute pain experience is specifically inaccurate but generally reliable. Pain 53(2), 183–189 (1993)CrossRefGoogle Scholar
  16. 16.
    Broom, D.M.: Evolution of pain. Vlaam. Diergeneeskund. Tijdschr. 70(1), 17–21 (2001)Google Scholar
  17. 17.
    Chen, J., Li, Z., Lv, Y.F., Li, C.L., Wang, Y., Wang, R.R., Geng, K.W., He, T.: Empathy for pain: a novel bio-psychosocial-behavioral laboratory animal model. Sheng li xue bao:(Acta Physiologica Sinica) 67(6), 561–570 (2015)Google Scholar
  18. 18.
    Hunter, M., Philips, C., Rachman, S.: Memory for pain. Pain 6(1), 35–46 (1979)CrossRefGoogle Scholar
  19. 19.
    Lamm, C., Decety, J., Singer, T.: Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54(3), 2492–2502 (2011)CrossRefGoogle Scholar
  20. 20.
    Schwartz, N., Miller, C., Fields, H.L.: Cortico-accumbens regulation of approach-avoidance behavior is modified by experience and chronic pain. Cell Rep. 19(8), 1522–1531 (2017)Google Scholar
  21. 21.
    Talmi, D., Dayan, P., Kiebel, S.J., Frith, C.D., Dolan, R.J.: How humans integrate the prospects of pain and reward during choice. J. Neurosci. 29(46), 14617–14626 (2009)Google Scholar
  22. 22.
    Wiech, K., Tracey, I.: Pain, decisions, and actions: a motivational perspective. Front. Neurosci. 7, 46 (2013)CrossRefGoogle Scholar
  23. 23.
    Zaman, J., Madden, V.J., Iven, J., Wiech, K., Weltens, N., Ly, H.G., Vlaeyen, J.W.S., Van Oudenhove, L., Van Diest, I.: Biased visceral perception through fear learning biased intensity judgements of visceral sensations after learning to fear visceral stimuli: a drift diffusion approach. J. Pain (2017)Google Scholar
  24. 24.
    Craig, A.D.: Opinion: how do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3(8), 655 (2002)Google Scholar
  25. 25.
    Pearce, S.A., Isherwood, S., Hrouda, D., Richardson, P.H., Erskine, A., Skinner, J.: Memory and pain: tests of mood congruity and state dependent learning in experimentally induced and clinical pain. Pain 43(2), 187–193 (1990)CrossRefGoogle Scholar
  26. 26.
    Roche, P.A., Gijsbers, K.: A comparison of memory for induced ischaemic pain and chronic rheumatoid pain. Pain 25(3), 337–343 (1986)Google Scholar
  27. 27.
    Bonavita, V., De Simone, R.: Pain as an evolutionary necessity. Neurol. Sci. 32(1), 61–66 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Trevor Richardson
    • 1
    Email author
  • Indranil Sur
    • 2
  • Heni Ben Amor
    • 1
  1. 1.Arizona State UniversityTempeUSA
  2. 2.SRI InternationalPrincetonUSA

Personalised recommendations