Role of Immunoregulatory Cytokine IL-15 in the Endometrium

  • Svetlana DambaevaEmail author
  • Kenneth D. Beaman


Within the endometrial environment, which is tightly controlled by ovarian hormones, cells of the immune system play an important role in the regulation of processes that must happen in preparation for embryo implantation and placental growth. Immune cells are numerous in the endometrium; they include lymphocytes, macrophages, dendritic cells, and neutrophils. NK cells represent the most abundant and dynamic population of immune cells in the endometrium, as their number gradually increases with the progression of the menstrual cycle and remains exclusively high in decidualized stroma when pregnancy occurs. A key cytokine responsible for NK cell proliferation, survival, and functional activity is IL-15. The endometrium is among the tissues with a high IL-15 mRNA expression. The expression of IL-15 in the endometrium is low in the proliferative phase and peaks during the secretory phase. Main producers of IL-15 in the endometrium are stromal cells, which upregulate IL-15 production upon the influence of progesterone and differentiation into decidual cells. Endometrial stromal cells also express IL-15Rα; this allows them to trans-present the IL-15 to the neighboring NK cells. Prolonged stimulation of NK cells by the membrane-bound IL15/IL15Rα complex is known to mediate a metabolic reprogramming in NK cells and increase their effector functions such as degranulation. This feature of NK cells is important for clearance of senescent endometrial cells which drive a transient inflammatory reaction specific for receptive endometrium. Overexpression of IL-15 could have a detrimental effect on pregnancy development due to excessive activation of uterine NK cells. Thus, IL-15 production in endometrium has to be tightly regulated to achieve an optimal balance in tuning uterine NK cell activity toward supporting embryo implantation and placental development.


Endometrium IL-15 NK cells Cytokine IL-15Rα 


  1. 1.
    Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994;264(5161):965–8.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001;97(1):14–32.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med. 2000;191(5):771–80.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Marcais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol. 2014;15(8):749–57.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Donnelly RP, Loftus RM, Keating SE, Liou KT, Biron CA, Gardiner CM, et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J Immunol. 2014;193(9):4477–84.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Anderson DM, Kumaki S, Ahdieh M, Bertles J, Tometsko M, Loomis A, et al. Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J Biol Chem. 1995;270(50):29862–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Leonard WJ, Depper JM, Crabtree GR, Rudikoff S, Pumphrey J, Robb RJ, et al. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature. 1984;311(5987):626–31.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Dubois S, Mariner J, Waldmann TA, Tagaya Y. IL-15Ralpha recycles and presents IL-15 in trans to neighboring cells. Immunity. 2002;17(5):537–47.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Schluns KS, Stoklasek T, Lefrancois L. The roles of interleukin-15 receptor alpha: trans-presentation, receptor component, or both? Int J Biochem Cell Biol. 2005;37(8):1567–71.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Perdreau H, Mortier E, Bouchaud G, Sole V, Boublik Y, Plet A, et al. Different dynamics of IL-15R activation following IL-15 cis- or trans-presentation. Eur Cytokine Netw. 2010;21(4):297–307.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Zanoni I, Spreafico R, Bodio C, Di Gioia M, Cigni C, Broggi A, et al. IL-15 cis presentation is required for optimal NK cell activation in lipopolysaccharide-mediated inflammatory conditions. Cell Rep. 2013;4(6):1235–49.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Koka R, Burkett PR, Chien M, Chai S, Chan F, Lodolce JP, et al. Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med. 2003;197(8):977–84.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Guo Y, Luan L, Patil NK, Sherwood ER. Immunobiology of the IL-15/IL-15Ralpha complex as an antitumor and antiviral agent. Cytokine Growth Factor Rev. 2017;38:10–21.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Robinson TO, Schluns KS. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett. 2017;190:159–68.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cui G, Hara T, Simmons S, Wagatsuma K, Abe A, Miyachi H, et al. Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci U S A. 2014;111(5):1915–20.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Briard D, Brouty-Boye D, Azzarone B, Jasmin C. Fibroblasts from human spleen regulate NK cell differentiation from blood CD34(+) progenitors via cell surface IL-15. J Immunol. 2002;168(9):4326–32.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kinoshita N, Hiroi T, Ohta N, Fukuyama S, Park EJ, Kiyono H. Autocrine IL-15 mediates intestinal epithelial cell death via the activation of neighboring intraepithelial NK cells. J Immunol. 2002;169(11):6187–92.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Miranda-Carus ME, Balsa A, Benito-Miguel M, Perez de Ayala C, Martin-Mola E. IL-15 and the initiation of cell contact-dependent synovial fibroblast-T lymphocyte cross-talk in rheumatoid arthritis: effect of methotrexate. J Immunol. 2004;173(2):1463–76.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Giron-Michel J, Azzi S, Khawam K, Mortier E, Caignard A, Devocelle A, et al. Interleukin-15 plays a central role in human kidney physiology and cancer through the gammac signaling pathway. PLoS One. 2012;7(2):e31624.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sandau MM, Schluns KS, Lefrancois L, Jameson SC. Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15R alpha by the same cells. J Immunol. 2004;173(11):6537–41.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kitaya K, Yasuda J, Yagi I, Tada Y, Fushiki S, Honjo H. IL-15 expression at human endometrium and decidua. Biol Reprod. 2000;63(3):683–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Okada S, Okada H, Sanezumi M, Nakajima T, Yasuda K, Kanzaki H. Expression of interleukin-15 in human endometrium and decidua. Mol Hum Reprod. 2000;6(1):75–80.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wilkens J, Male V, Ghazal P, Forster T, Gibson DA, Williams AR, et al. Uterine NK cells regulate endometrial bleeding in women and are suppressed by the progesterone receptor modulator asoprisnil. J Immunol. 2013;191(5):2226–35.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Chegini N, Ma C, Roberts M, Williams RS, Ripps BA. Differential expression of interleukins (IL) IL-13 and IL-15 throughout the menstrual cycle in endometrium of normal fertile women and women with recurrent spontaneous abortion. J Reprod Immunol. 2002;56(1–2):93–110.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife. 2017;6.Google Scholar
  26. 26.
    Kitaya K, Yasuo T. Regulatory role of membrane-bound form interleukin-15 on human uterine microvascular endothelial cells in circulating CD16(−) natural killer cell extravasation into human endometrium. Biol Reprod. 2013;89(3):70.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Dunn CL, Critchley HO, Kelly RW. IL-15 regulation in human endometrial stromal cells. J Clin Endocrinol Metab. 2002;87(4):1898–901.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Okada H, Nakajima T, Yasuda K, Kanzaki H. Interleukin-1 inhibits interleukin-15 production by progesterone during in vitro decidualization in human. J Reprod Immunol. 2004;61(1):3–12.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Verma S, Hiby SE, Loke YW, King A. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol Reprod. 2000;62(4):959–68.CrossRefGoogle Scholar
  30. 30.
    Franchi A, Zaret J, Zhang X, Bocca S, Oehninger S. Expression of immunomodulatory genes, their protein products and specific ligands/receptors during the window of implantation in the human endometrium. Mol Hum Reprod. 2008;14(7):413–21.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Toth B, Haufe T, Scholz C, Kuhn C, Friese K, Karamouti M, et al. Placental interleukin-15 expression in recurrent miscarriage. Am J Reprod Immunol. 2010;64(6):402–10.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ledee N, Chaouat G, Serazin V, Lombroso R, Dubanchet S, Oger P, et al. Endometrial vascularity by three-dimensional power Doppler ultrasound and cytokines: a complementary approach to assess uterine receptivity. J Reprod Immunol. 2008;77(1):57–62.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Logan PC, Yango P, Tran ND. Endometrial stromal and epithelial cells exhibit unique aberrant molecular defects in patients with endometriosis. Reprod Sci. 2018;25(1):140–59.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Yu JJ, Sun HT, Zhang ZF, Shi RX, Liu LB, Shang WQ, et al. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction. 2016;152(2):151–60.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Arici A, Matalliotakis I, Goumenou A, Koumantakis G, Vassiliadis S, Selam B, et al. Increased levels of interleukin-15 in the peritoneal fluid of women with endometriosis: inverse correlation with stage and depth of invasion. Hum Reprod. 2003;18(2):429–32.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mah AY, Cooper MA. Metabolic regulation of natural killer cell IFN-gamma production. Crit Rev Immunol. 2016;36(2):131–47.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK, et al. Metabolic reprogramming supports IFN-gamma production by CD56bright NK cells. J Immunol. 2016;196(6):2552–60.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Bulmer JN, Hollings D, Ritson A. Immunocytochemical evidence that endometrial stromal granulocytes are granulated lymphocytes. J Pathol. 1987;153(3):281–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 2014;15(11):1139–53.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Griffith OW, Chavan AR, Protopapas S, Maziarz J, Romero R, Wagner GP. Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proc Natl Acad Sci U S A. 2017;114(32):E6566–E75.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Vilella F, Ramirez L, Berlanga O, Martinez S, Alama P, Meseguer M, et al. PGE2 and PGF2alpha concentrations in human endometrial fluid as biomarkers for embryonic implantation. J Clin Endocrinol Metab. 2013;98(10):4123–32.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ledee N, Petitbarat M, Chevrier L, Vitoux D, Vezmar K, Rahmati M, et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am J Reprod Immunol. 2016;75(3):388–401.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Clinical Immunology Laboratory, Center for Cancer Cell Biology, Immunology, and InfectionRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA

Personalised recommendations