Advertisement

Matrix-Analytic Methods – An Algorithmic Approach to Stochastic Modelling and Analysis

  • Qi-Ming HeEmail author
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 152)

Abstract

The field of matrix analytic methods (MAM) was pioneered by Dr. Marcel F. Neuts in the middle of the 1970s for the study of queueing models. In the past 40 years, the theory on MAM has been advanced in parallel with its applications significantly.

Matrix-analytic methods contain a set of tools fundamental to the analysis of a family of Markov processes rich in structure and of wide applicability. Matrix-analytic methods are extensively used in science, engineering, and statistics for the modelling, performance analysis, and design of computer systems, telecommunication networks, network protocols, manufacturing systems, supply chain management systems, risk/insurance models, etc.

References

  1. 1.
    Asmussen, S., Bladt, M.: Renewal theory and queueing algorithms for matrix-exponential distributions. In: Alfa, A.S., Chakravarthy, S. (eds.) Proceedings of the First International Conference on Matrix Analytic Methods in Stochastic Models. Marcel Dekker, New York (1996)Google Scholar
  2. 2.
    Asmussen, S., Koole, G.: Marked point processes as limits of Markovian arrival streams. J. Appl. Probab. 30, 365–372 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asmussen, S.: Stationary distributions for fluid flow models with or without Brownian noise. Stoch. Model. 11, 21–49 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Asmussen, S., Nerman, O., Olsson, M.: Fitting phase-type distributions via the EM algorithm. Scand. J. Stat. 23, 419–441 (1996)zbMATHGoogle Scholar
  5. 5.
    Bean, N., OReilly, N., Taylor, P.: Algorithms for return probabilities for stochastic fluid flows. Stoch. Model. 21(1), 149–184 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Badescu, A.L., Landriault, D.: Applications of fluid flow matrix analytic methods in ruin theory – a review. Serie A: Matemáticas de la Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. 103(2), 353–372 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions and Markov Models: Theory and Applications. Springer, New York (2014)CrossRefGoogle Scholar
  8. 8.
    Chen, F., Song, J.S.: Optimal policies for multi-echelon inventory problems with Markov modulated demand. Oper. Res. 49(2), 226–234 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    da Silva Soares, A., Latouche, G.: Matrix-analytic methods for fluid queues with finite buffers. Perform. Eval. 63, 295–314 (2006)CrossRefGoogle Scholar
  10. 10.
    He, Q.M.: Queues with marked customers. Adv. Appl. Probab. 28, 567–587 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    He, Q.M., Neuts, M.F.: Markov chains with marked transitions. Stoch. Process. Appl. 74(1), 37–52 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    He and Wu: Multi-Layer MMFF Processes and the MAP/PH/K + GI Queue: Theory and Algorithms. (Submitted for Publication) (2019)Google Scholar
  13. 13.
    He, Q.M.: Fundamentals of matrix-analytic methods. Springer, New York (2014)CrossRefGoogle Scholar
  14. 14.
    Kroese, D.P., Scheinhardt, W.R.W., Taylor, P.G.: Spectral properties of the tandem Jackson network, seen as a quasi-birth-and-death process. Ann. Appl. Probab. 14(4), 2057–2089 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Latouche, G.: A note on two matrices occurring in the solution of quasi-birth-and-death processes. Stoch. Model. 3(2), 251–257 (1987)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modelling. SIAM, Philadelphia (1999)CrossRefGoogle Scholar
  17. 17.
    Latouche, G., Nguyen, G.T.: Analysis of fluid flow models. Queueing Model. Serv. Manag. 1(2), 1–30 (2018)Google Scholar
  18. 18.
    Lucantoni, D.M., Choudhury, G.L., Whitt, W.: The transient BMAP/G/1 queue. Stoch. Model. 10, 145–182 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Miyazawa, M., Zhao, Y.Q.: The stationary tail asymptotics in the GI/G/1 type queue with countably many background states. J. Appl. Probab. 36(4), 1231–1251 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Neuts, M.F.: Probability distributions of phase type. In: Liber Amicorum Prof. Emeritus H. Florin, pp. 173–206. University of Louvain, Belgium (1975)Google Scholar
  21. 21.
    Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16, 764–779 (1979)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Neuts, M.F.: Matrix-geometric solutions in stochastic models: an algorithmic approach. The Johns Hopkins University Press, Baltimore (1981)zbMATHGoogle Scholar
  23. 23.
    Neuts, M.F.: Structured stochastic matrices of M/G/1 type and their applications. Marcel Dekker, New York (1989)zbMATHGoogle Scholar
  24. 24.
    O’Cinneide, C.A.: Characterization of phase-type distributions. Stoch. Model. 6(1), 1–57 (1990)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ramaswami, V.: The N/G/1 queue and its detailed analysis. Adv. Appl. Probab. 12, 222–261 (1980)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: Smith, D., Hey, P. (eds.) Teletraffic Engineering in a Competitive World (Proceedings of the 16th International Teletraffic Congress), pp. 1019–1030. Elsevier Science B.V, Edinburgh (1999)Google Scholar
  27. 27.
    Sengupta, B.: Markov processes whose steady state distribution is matrix-exponential with an application to the GI/PH/1 queue. Adv. Appl. Probab. 21, 159–180 (1989)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Takine, T.: Queue length distribution in a FIFO single-server queue with multiple arrival streams having different service time distributions. Queueing Syst. 39, 349–375 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Xia, L., He, Q.M., Alfa, A.S.: Optimal control of state-dependent service rates in a MAP/M/1 queue. IEEE Trans. Autom. Control. 62(10), 4965–4979 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations