Optimization in Large Scale Problems pp 33-39 | Cite as
A Brief Overview of Interdiction and Robust Optimization
Abstract
Two-player optimization problems span an impressive array of possible situations, including cases in which both players optimize their own objective with no regard for the other’s goals, or in which one agent seeks to impede the other’s objective. The agents may commit their decisions simultaneously, using either deterministic or random (mixed) strategies. Alternatively, they can play them in sequence, where one agent has complete or partial knowledge of the other’s decisions. This overview provides the reader insights and entry points into learning about two-stage zero-sum games (e.g., minimax or maximin) in which one agent has complete knowledge of the other’s actions. The difference between interdiction and robust optimization models is described, with a focus on steering the reader to relevant and contemporary research in the field.
References
- 1.Atamtürk, A., Zhang, M.: Two-stage robust network flow and design under demand uncertainty. Oper. Res. 55(4), 662–673 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Bayrak, H., Bailey, M.D.: Shortest path network interdiction with asymmetric information. Networks 52(3), 133–140 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Ben-Tal, A., Boyd, S., Nemirovski, A.: Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems. Math. Program. 107(1–2):63–89 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Ben-Tal, A., Do Chung, B., Mandala, S.R., Yao, T.: Robust optimization for emergency logistics planning: risk mitigation in humanitarian relief supply chains. Transp. Res. B: Methodolog. 45(8), 1177–1189 (2011)CrossRefGoogle Scholar
- 5.Ben-Tal, A., El-Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)zbMATHCrossRefGoogle Scholar
- 6.Ben-Tal, A., Golany, B., Nemirovski, A., Vial, J.-P.: Retailer-supplier flexible commitments contracts: a robust optimization approach. Manuf. Serv. Oper. Manag. 7(3), 248–271 (2005)CrossRefGoogle Scholar
- 7.Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Ben-Tal, A., Nemirovski, A.: Stable truss topology design via semidefinite programming. SIAM J. Optim. 7, 991–1016 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Ben-Tal, A., Nemirovski, A.: Robust solutions to uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Ben-Tal, A., Nemirovski, A.: Robust optimization–methodology and applications. Math. Program. 92(3), 453–480 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Bertsimas, D., Brown, D.B.: Constructing uncertainty sets for robust linear optimization. Oper. Res. 57(6), 1483–1495 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Bertsimas, D., Dunning, I., Lubin, M.: Reformulation versus cutting-planes for robust optimization. Comput. Manag. Sci. 13(2), 195–217 (2016)MathSciNetCrossRefGoogle Scholar
- 14.Bertsimas, D., Litvinov, E., Sun, X.A., Zhao, J., Zheng, T.: Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28(1), 52–63 (2013)CrossRefGoogle Scholar
- 15.Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms. Oper. Res. Lett. 32(6), 510–516 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98, 49–71 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Bertsimas, D., Sim, M.: Tractable approximations to robust conic optimization problems. Math. Program. 107(1–2):5–36 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Bertsimas, D., Sim, M., Zhang, M.: Adaptive distributionally robust optimization. Manag. Sci. 65(2), 604–618 (2019)CrossRefGoogle Scholar
- 20.Bertsimas, D., Thiele, A.: A robust optimization approach to inventory theory. Oper. Res. 54(1), 150–168 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Brown, G., Carlyle, M., Diehl, D., Kline, J., Wood, K.: A two-sided optimization for theater ballistic missile defense. Oper. Res. 53(5), 745–763 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Brown, G.G., Carlyle, W.M., Harney, R., Skroch, E., Wood, R.K.: Interdicting a nuclear-weapons project. Oper. Res. 57(4), 866–877 (2009)zbMATHCrossRefGoogle Scholar
- 23.Brown, G.G., Carlyle, W.M., Salmerón, J., Wood, R.K.: Analyzing the vulnerability of critical infrastructure to attack and planning defenses. In: Greenberg, H.J., Smith, J.C. (eds.) Tutorials in Operations Research: Emerging Theory, Methods, and Applications, pp. 102–123. INFORMS, Hanover (2005)Google Scholar
- 24.Brown, G.G., Carlyle, W.M., Salmerón, J., Wood, R.K.: Defending critical infrastructure. Interfaces 36(6), 530–544 (2006)CrossRefGoogle Scholar
- 25.Cappanera, P., Scaparra, M.P.: Optimal allocation of protective resources in shortest-path networks. Transp. Sci. 45(1), 64–80 (2011)CrossRefGoogle Scholar
- 26.Church, R.L., Scaparra, M.P.: The r-interdiction median problem with fortification. Geogr. Anal. 39(2), 129–146 (2007)CrossRefGoogle Scholar
- 27.Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: the median and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)CrossRefGoogle Scholar
- 28.Cormican, K.J., Morton, D.P., Wood, R.K.: Stochastic network interdiction. Oper. Res. 46(2), 184–197 (1998)zbMATHCrossRefGoogle Scholar
- 29.Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Esfahani, P.M., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. Math. Program. 171(1–2), 115–166 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Fischetti, M., Monaci, M., Sinnl, M.: A dynamic reformulation heuristic for generalized interdiction problems. Eur. J. Oper. Res. 267(1), 40–51 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.Fulkerson, D.R., Harding, G.C.: Maximizing minimum source-sink path subject to a budget constraint. Math. Program. 13(1), 116–118 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Goh, J., Sim, M.: Distributionally robust optimization and its tractable approximations. Oper. Res. 58(4-part-1), 902–917 (2010)Google Scholar
- 34.Golden, B.: A problem in network interdiction. Nav. Res. Logist. Q. 25(4), 711–713 (1978)zbMATHCrossRefGoogle Scholar
- 35.Gorissen, B.L., Yanıkoğlu, İ., den Hertog, D.: A practical guide to robust optimization. Omega 53, 124–137 (2015)CrossRefGoogle Scholar
- 36.Gregory, C., Darby-Dowman, K., Mitra, G.: Robust optimization and portfolio selection: the cost of robustness. Eur. J. Oper. Res. 212(2), 417–428 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Held, H., Hemmecke, R., Woodruff, D.L.: A decomposition algorithm applied to planning the interdiction of stochastic networks. Naval Res. Logist. 52(4), 321–328 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Held, H., Woodruff, D.L.: Heuristics for multi-stage interdiction of stochastic networks. J. Heuristics 11(6), 483–500 (2005)zbMATHCrossRefGoogle Scholar
- 39.Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications, vol. 14. Springer Science & Business Media, Dordrecht (1997)zbMATHCrossRefGoogle Scholar
- 41.Li, Z., Ding, R., Floudas, C.A.: A comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization. Ind. Eng. Chem. Res. 50(18), 10567–10603 (2011)Google Scholar
- 42.Lim, C., Smith, J.C.: Algorithms for discrete and continuous multicommodity flow network interdiction problems. IIE Trans. 39(1), 15–26 (2007)CrossRefGoogle Scholar
- 43.Lin, X., Janak, S.L., Floudas, C.A.: A new robust optimization approach for scheduling under uncertainty: I. Bounded uncertainty. Comput. Chem. Eng. 28(6–7), 1069–1085 (2004)CrossRefGoogle Scholar
- 44.Lorca, Á., Sun, X.A., Litvinov, E., Zheng, T.: Multistage adaptive robust optimization for the unit commitment problem. Oper. Res. 64(1), 32–51 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Lozano, L., Smith, J.C.: A backward sampling framework for interdiction problems with fortification. INFORMS J. Comput. 29(1), 123–139 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Lozano, L., Smith, J.C., Kurz, M.E.: Solving the traveling salesman problem with interdiction and fortification. Oper. Res. Lett. 45(3), 210–216 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Moon, Y., Yao, T.: A robust mean absolute deviation model for portfolio optimization. Comput. Oper. Res. 38(9), 1251–1258 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Morton, D.P., Pan, F., Saeger, K.J.: Models for nuclear smuggling interdiction. IIE Trans. 39(1), 3–14 (2007)CrossRefGoogle Scholar
- 49.Natarajan, K., Pachamanova, D., Sim, M.: Constructing risk measures from uncertainty sets. Oper. Res. 57(5), 1129–1141 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 50.Pan, F., Charlton, W., Morton, D.P.: Interdicting smuggled nuclear material. In: Woodruff, D.L. (ed.) Network Interdiction and Stochastic Integer Programming, pp. 1–20. Kluwer Academic, Boston (2003)Google Scholar
- 51.Prince, M., Smith, J.C., Geunes, J.: A three-stage procurement optimization problem under uncertainty. Naval Res. Logist. 60(1), 395–412 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 52.Royset, J.O., Wood, R.K.: Solving the bi-objective maximum-flow network-interdiction problem. INFORMS J. Comput. 19(2), 175–184 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 53.Salmerón, J., Wood, K., Baldick, R.: Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst. 19(2), 905–912 (2004)CrossRefGoogle Scholar
- 54.Salmerón, J., Wood, K., Baldick, R.: Worst-case interdiction analysis of large-scale electric power grids. IEEE Trans. Power Syst. 24(1), 96–104 (2009)CrossRefGoogle Scholar
- 55.Scaparra, M.P., Church, R.L.: A bilevel mixed-integer program for critical infrastructure protection planning. Comput. Oper. Res. 35(6), 1905–1923 (2008)zbMATHCrossRefGoogle Scholar
- 56.Scaparra, M.P., Church, R.L.: An exact solution approach for the interdiction median problem with fortification. Eur. J. Oper. Res. 189(1), 76–92 (2008)zbMATHCrossRefGoogle Scholar
- 57.Smith, J.C.: Basic interdiction models. In: Cochran, J. (ed.) Wiley Encyclopedia of Operations Research and Management Science, pp. 323–330. Wiley, Hoboken (2010)Google Scholar
- 58.Smith, J.C., Lim, C.: Algorithms for network interdiction and fortification games. In: Migdalas, A., Pardalos, P.M., Pitsoulis, L., Chinchuluun, A. (eds.) Pareto Optimality, Game Theory and Equilibria. Nonconvex Optimization and its Applications Series, pp. 609–644. Springer, New York (2008)Google Scholar
- 59.Smith, J.C., Lim, C., Sudargho, F.: Survivable network design under optimal and heuristic interdiction scenarios. J. Glob. Optim. 38(2), 181–199 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 60.Thiele, A., Terry, T., Epelman, M.: Robust linear optimization with recourse. Technical Report, Lehigh University, Bethlehem, PA (2009)Google Scholar
- 61.Washburn, A., Wood, R.K.: Two-person zero-sum games for network interdiction. Oper. Res. 43(2), 243–251 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
- 62.Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization. Oper. Res. 62(6), 1358–1376 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 63.Wollmer, R.D.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
- 64.Wood, R.K.: Deterministic network interdiction. Math. Comput. Modell. 17(2), 1–18 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 65.Xiong, P., Jirutitijaroen, P., Singh, C.: A distributionally robust optimization model for unit commitment considering uncertain wind power generation. IEEE Trans. Power Syst. 32(1), 39–49 (2017)CrossRefGoogle Scholar
- 66.Yao, T., Mandala, S.R., Do Chung, B.: Evacuation transportation planning under uncertainty: a robust optimization approach. Netw. Spat. Econ. 9(2), 171 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 67.Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 41(5), 457–461 (2013)MathSciNetzbMATHCrossRefGoogle Scholar