Optimal Planning of Electric Power Systems

  • I. F. Abdin
  • E. ZioEmail author
Part of the Springer Optimization and Its Applications book series (SOIA, volume 152)


Electric power systems provide an essential service to any modern society. They are inherently large- scale dynamic systems with a high degree of spatio-temporal complexity. Their reliability and security of supply are central considerations in any regional or global energy-related policy. Methods for power systems planning have typically ensured key operational reliability aspects under normal operating conditions and in response to anticipated demand variability, uncertainty and supply disruptions, e.g. due to errors in load forecasts and to unexpected generation units outages. Solutions have been commonly built on capacity adequacy and operating reserves requirements, among others. However, recent objectives for environmental sustainability and the threats of climate change are challenging the reliability requirements of power systems in various new ways and necessitate adapted planning methods.

The present chapter describes some of the issues related to the development of the integrated techno-economic modeling and robust optimization framework that is needed today for power systems planning adapted. Such planning framework should cope with the new context by addressing the challenges associated with the sustainability targets of future power systems, and most notably ensuring operational flexibility against the variability of renewable energy sources, ensuring resilience against extreme weather events and ensuring robustness against the uncertainties inherent in both the electric power supply and system load.

This chapter presents the context by summarizing the main sustainability drivers for the current (and future) power systems planning and operation. These well-known sustainability targets have become a worldwide imperative in all sectors of economic activity, and are embedded within almost any regulatory or policy dialogue. We will, then, review the particular transformation undergoing in the electric power sector planning, not only driven by the sustainability goals, but also by the more general technological and/or regulatory advancements. The main power systems planning related challenges are detailed, along with a thorough review of previous research works and research gaps. Then, key research questions and ensuing objectives are formulated.


  1. 1.
    Allen M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N.K., et al.: IPCC fifth assessment synthesis report-climate change 2014 synthesis report. In: (2014)Google Scholar
  2. 2.
    IEA.: Global energy and CO2 status report. All Rights Reserved. (2018)Google Scholar
  3. 3.
    Cronin, J., Anandarajah, G., Dessens, O.: Climate change impacts on the energy system: a review of trends and gaps. Clim. Chang. 151(2), 79–93 (2018)CrossRefGoogle Scholar
  4. 4.
    IEA.: Making the Energy Sector more Resilient to Climate Change. Allrights Reserved. (2015)Google Scholar
  5. 5.
    Cambridge Institute for Sustainability Leadership: Climate Change: Implications for the Energy Sector. World Energy Council (WEC), the Cambridge Institute for Sustainability Leadership (CISL) and the Cambridge Judge Business School (CJBS (2014)Google Scholar
  6. 6.
    Hemmati, R., Hooshmand, R.-A., Khodabakhshian, A.: Comprehensive review of generation and transmission expansion planning. IET Gener. Transm. Distrib. 7(9), 955–964 (2013)CrossRefGoogle Scholar
  7. 7.
    Masse, P., Gibrat, R.: Application of linear programming to investments in the electric power industry. Manag. Sci. 3(2), 149–166 (1957)CrossRefGoogle Scholar
  8. 8.
    Bakirtzis, G.A., Biskas, P.N., Chatziathanasiou, V.: Generation expansion planning by MILP considering mid-term scheduling decisions. Electr. Power Syst. Res. 86, 98–112 (2012)CrossRefGoogle Scholar
  9. 9.
    Koltsaklis, N.E., Georgiadis, M.C.: A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints. Appl. Energy. 158, 310–331 (2015)CrossRefGoogle Scholar
  10. 10.
    Hemmati, R., Hooshmand, R.-A., Khodabakhshian, A.: Reliability constrained generation expansion planning with consideration of wind farms uncertainties in deregulated electricity market. Energy Convers. Manag. 76, 517–526 (2013)CrossRefGoogle Scholar
  11. 11.
    Dehghan, S., Amjady, N., Conejo, A.J.: Reliability-constrained robust power system expansion planning. IEEE Trans. Power Syst. 31(3), 2383–2392 (2016). 89 90 BibliographyCrossRefGoogle Scholar
  12. 12.
    Min, X., Jinfu, C., Zhong, D.X.: Generator maintenance scheduling in the generation expansion planning of interconnected power system. Transm. Distrib. Conf. Exhib. 2002: Asia Pacific. IEEE/PES. 3. IEEE., 1601–1605 (2002)Google Scholar
  13. 13.
    Pereira, A.J.C., Saraiva, J.T.: A decision support system for generation expansion planning in competitive electricity markets. Electr. Power Syst. Res. 80(7), 778–787 (2010)CrossRefGoogle Scholar
  14. 14.
    Pereira, A.J.C., Saraiva, J.T.: Generation expansion planning (GEP)–A long-term approach using system dynamics and genetic algorithms (GAs). Energy. 36(8), 5180–5199 (2011)CrossRefGoogle Scholar
  15. 15.
    Pereira, A.J.C., Saraiva, J.T.: A long term generation expansion planning model using system dynamics–case study using data from the Portuguese/Spanish generation system. Electr. Power Syst. Res. 97, 41–50 (2013)CrossRefGoogle Scholar
  16. 16.
    Sirikum, J., Techanitisawad, A., Kachitvichyanukul, V.: A new efficient GA-benders’ decomposition method: for power generation expansion planning with emission controls. IEEE Trans. Power Syst. 22(3), 1092–1100 (2007)CrossRefGoogle Scholar
  17. 17.
    Lu, Z., Qi, J., Wen, B., Li, X.: A dynamic model for generation expansion planning based on conditional value-at-risk theory under low-carbon economy. Electr. Power Syst. Res. 141, 363–371 (2016)CrossRefGoogle Scholar
  18. 18.
    Aghaei, J., MA Akbari, A., Roosta, M.G., Niknam, T.: Integrated renewable–conventional generation expansion planning using multi-objective framework. IET Gener. Transm. Distrib. 6(8), 773–784 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhan, Y., Zheng, Q.P., Wang, J., Pinson, P.: Generation expansion planning with large amounts of wind power via decision-dependent stochastic programming. IEEE Trans. Power Syst. 32(4), 3015–3026 (2016)CrossRefGoogle Scholar
  20. 20.
    Rajesh, K., Bhuvanesh, A., Kannan, S., Thangaraj, C.: Least cost generation expansion planning with solar power plant using differential evolution algorithm. Renew. Energy. 85, 677–686 (2016)CrossRefGoogle Scholar
  21. 21.
    Rajesh, K., Kannan, S., Thangaraj, C.: Least cost generation expansion planning with wind power plant incorporating emission using differential evolution algorithm. Int. J. Electr. Power Energy Syst. 80, 275–286 (2016)CrossRefGoogle Scholar
  22. 22.
    Gil, E., Aravena, I., Cárdenas, R.: Generation capacity expansion planning under hydro uncertainty using stochastic mixed integer programming and scenario reduction. IEEE Trans. Power Syst. 30(4), 1838–1847 (2015)CrossRefGoogle Scholar
  23. 23.
    Tekiner-Mogulkoc, H., Coit, D.W., Felder, F.A.: Mean-risk stochastic electricity generation expansion planning problems with demand uncertainties considering conditional-value-at-risk and maximum regret as risk measures. Int. J. Electr. Power Energy Syst. 73, 309–317 (2015)CrossRefGoogle Scholar
  24. 24.
    Park, H., Baldick, R.: Stochastic generation capacity expansion planning reducing greenhouse gas emissions. IEEE Trans. Power Syst. 30(2), 1026–1034 (2015)CrossRefGoogle Scholar
  25. 25.
    Li, S., Coit, D.W., Felder, F.: Stochastic optimization for electric power generation expansion planning with discrete climate change scenarios. In: Electr. Power Syst. Res., vol. 140, pp. 401–412 (2016)Google Scholar
  26. 26.
    Ghaderi, A., Moghaddam, M.P., Sheikh-El-Eslami, M.K.: Energy efficiency resource modeling in generation expansion planning. Energy. 68, 529–537 (2014)CrossRefGoogle Scholar
  27. 27.
    Satchwell, A., Hledik, R.: Analytical frameworks to incorporate demand response in long-term resource planning. Util. Policy. 28, 73–81 (2014)CrossRefGoogle Scholar
  28. 28.
    Tekiner-Mogulkoc, H., Coit, D.W., Felder, F.A.: Electric power system generation expansion plans considering the impact of smart grid technologies. Int. J. Electr. Power Energy Syst. 42(1), 229–239 (2012)CrossRefGoogle Scholar
  29. 29.
    Careri, F., Genesi, C., Marannino, P., Montagna, M., Rossi, S., Siviero, I.: Generation expansion planning in the age of green economy. IEEE Trans. Power Syst. 26(4), 2214–2223 (2011)CrossRefGoogle Scholar
  30. 30.
    Kagiannas, A.G., Askounis, D.T., Psarras, J.: Power generation planning: a survey from monopoly to competition. Int. J. Electr. Power Energy Syst. 26(6), 413–421 (2004)CrossRefGoogle Scholar
  31. 31.
    Sadeghi, H., Rashidinejad, M., Abdollahi, A.: A comprehensive sequential review study through the generation expansion planning. Renew. Sust. Energ. Rev. 67, 1369–1394 (2017)CrossRefGoogle Scholar
  32. 32.
    Kabouris, J., Kanellos, F.D.: Impacts of large-scale wind penetration on designing and operation of electric power systems. IEEE Trans. Sustain. Energy. 1(2), 107–114 (2010)CrossRefGoogle Scholar
  33. 33.
    Ummels, B.C., Gibescu, M., Pelgrum, E., Kling, W.L., Brand, A.J.: Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Convers. 22(1), 44–51 (2007)CrossRefGoogle Scholar
  34. 34.
    Charles Smith, J., Milligan, M.R., DeMeo, E.A., Parsons, B.: Utility wind integration and operating impact state of the art. IEEE Trans. Power Syst. 22(3), 900–908 (2007)CrossRefGoogle Scholar
  35. 35.
    Huber, M., Dimkova, D., Hamacher, T.: Integration of wind and solar power in Europe: assessment of flexibility requirements. Energy. 69, 236–246 (2014)CrossRefGoogle Scholar
  36. 36.
    Tabone, M.D., Goebel, C., Callaway, D.S.: The effect of PV siting on power system flexibility needs. Sol. Energy. 139, 776–786 (2016)CrossRefGoogle Scholar
  37. 37.
    Morales-España, G., Latorre, J.M., Ramos, A.: Tight and compact MILP formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 28(4), 4897–4908 (2013)CrossRefGoogle Scholar
  38. 38.
    Padhy, N.P.: Unit commitment-a bibliographical survey. IEEE Trans. Power Syst. 19(2), 1196–1205 (2004)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Tuohy, A., Meibom, P., Denny, E., O’Malley, M.: Unit commitment for systems with significant wind penetration. IEEE Trans. Power Syst. 24(2), 592–601 (2009)CrossRefGoogle Scholar
  40. 40.
    Cheng, R., Xu, Z., Liu, P., Wang, Z., Li, Z., Jones, I.: A multi-region optimization planning model for China’s power sector. Appl. Energy. 137, 413–426 (2015)CrossRefGoogle Scholar
  41. 41.
    Koltsaklis, N.E., Dagoumas, A.S., Kopanos, G.M., Pistikopoulos, E.N., Georgiadis, M.C.: A spatial multi-period long-term energy planning model: a case study of the Greek power system. Appl. Energy. 115, 456–482 (2014)CrossRefGoogle Scholar
  42. 42.
    Barteczko-Hibbert, C., Bonis, I., Binns, M., Theodoropoulos, C., Azapagic, A.: A multi-period mixed-integer linear optimisation of future electricity supply considering life cycle costs and environmental impacts. Appl. Energy. 133, 317–334 (2014)CrossRefGoogle Scholar
  43. 43.
    Kirschen, D.S., Ma, J., Silva, V., Belhomme, R.: Optimizing the flexibility of a portfolio of generating plants to deal with wind generation. In: Power and Energy Society General Meeting, 2011 IEEE. IEEE, pp. 1–7 (2011)Google Scholar
  44. 44.
    Flores-Quiroz, A., Palma-Behnke, R., Zakeri, G., Moreno, R.: A column generation approach for solving generation expansion planning problems with high renewable energy penetration. Electr. Pow. Syst. Res. 136, 232–241 (2016)CrossRefGoogle Scholar
  45. 45.
    Deane, J.P., Chiodi, A., Gargiulo, M., GallachÓir, B.P.Ó.: Soft-linking of a power systems model to an energy systems model. Energy. 42(1), 303–312 (2012)CrossRefGoogle Scholar
  46. 46.
    Peerapat Vithayasrichareon, T. Lozanov, J.R., MacGill, I.: Impact of operational constraints on generation portfolio planning with renewables. In: Power & Energy Society General Meeting, 2015 IEEE. IEEE, pp. 1–5 (2015)Google Scholar
  47. 47.
    Belderbos, A., Delarue, E.: Accounting for flexibility in power system planning with renewables. Int. J. Electr. Power Energy Syst. 71, 33–41 (2015)CrossRefGoogle Scholar
  48. 48.
    Palmintier, B.S., Webster, M.D.: Impact of operational flexibility on electricity generation planning with renewable and carbon targets. IEEE Trans. Sustainable Energy. 7(2), 672–684 (2015)CrossRefGoogle Scholar
  49. 49.
    Pereira, S., Ferreira, P., Vaz, A.I.F.: Generation expansion planning with high share of renewables of variable output. Appl. Energy. 190, 1275–1288 (2017)CrossRefGoogle Scholar
  50. 50.
    Ma, J., Silva, V., Belhomme, R., Kirschen, D.S., Ochoa, L.F.: Evaluating and planning flexibility in sustainable power systems. In: Power and Energy Society General Meeting (PES), 2013 IEEE. IEEE, pp. 1–11 (2013)Google Scholar
  51. 51.
    Lannoye, E., Flynn, D., O’Malley, M.: Evaluation of power system flexibility. IEEE Trans. Power Syst. 27(2), 922–931 (2012)CrossRefGoogle Scholar
  52. 52.
    Ulbig, A., Andersson, G.: Analyzing operational flexibility of electric power systems. Int. J. Electr. Power Energy Syst. 72, 155–164 (2015)CrossRefGoogle Scholar
  53. 53.
    Ma, J., Silva, V., Belhomme, R., Kirschen, D.S., Ochoa, L.F.: Exploring the use of flexibility indices in low carbon power systems. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). IEEE, pp. 1–5 (2012)Google Scholar
  54. 54.
    Zhao, J., Zheng, T., Litvinov, E.: A unified framework for defining and measuring flexibility in power system. IEEE Trans. Power Syst. 31(1), 339–347 (2016)CrossRefGoogle Scholar
  55. 55.
    Fang, Y., Sansavini, G.: Optimizing power system investments and resilience against attacks. Reliab. Eng. Syst. Saf. 159, 161–173 (2017)CrossRefGoogle Scholar
  56. 56.
    Meehl, G.A., Tebaldi, C.: More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 305(5686), 994–997 (2004)CrossRefGoogle Scholar
  57. 57.
    Guerreiro, S.B., Dawson, R.J., Kilsby, C., Lewis, E., Ford, A.-i.: Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 13(3), 034009 (2018)CrossRefGoogle Scholar
  58. 58.
    Poumadere, M., Mays, C., Le Mer, S., Blong, R.: The 2003 heat wave in France: dangerous climate change here and now. Risk Anal.: Int. J. 25(6), 1483–1494 (2005)CrossRefGoogle Scholar
  59. 59.
    Rocchetta, R., Li, Y., Zio, E.: Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions. Reliab. Eng. Syst. Saf. 136, 47–61 (2015)CrossRefGoogle Scholar
  60. 60.
    Panteli, M., Pickering, C., Wilkinson, S., Dawson, R., Mancarella, P.: Power system resilience to extreme weather: fragility modelling, probabilistic impact assessment, and adaptation measures. IEEE Trans. Power Syst. 32, 3747–3757 (2017)CrossRefGoogle Scholar
  61. 61.
    Cadini, F., Agliardi, G.L., Zio, E.: A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions. Appl. Energy. 185, 267–279 (2017)CrossRefGoogle Scholar
  62. 62.
    Cohen, S.M., Averyt, K., Macknick, J., Meldrum, J.: Modeling climate-water impacts on electricity sector capacity expansion. In: ASME 2014 Power Conference. American Society of Mechanical Engineers, pp. V002T10A007– V002T10A007 (2014)Google Scholar
  63. 63.
    Shao, C., Shahidehpour, M., Wang, X., Wang, X., Wang, B.: Integrated planning of electricity and natural gas transportation systems for enhancing the power grid resilience. IEEE Trans. Power Syst. 32(6), 4418–4429 (2017)CrossRefGoogle Scholar
  64. 64.
    Ke, X., Wu, D., Rice, J., Kintner-Meyer, M., Lu, N.: Quantifying impacts of heat waves on power grid operation. Appl. Energy. 183, 504–512 (2016)CrossRefGoogle Scholar
  65. 65.
    Liu, Y., Sioshansi, R., Conejo, A.J.: Multistage stochastic investment planning with multiscale representation of uncertainties and decisions. IEEE Trans. Power Syst. 33(1), 781–791 (2018)CrossRefGoogle Scholar
  66. 66.
    Shi, J., Oren, S.S.: Stochastic unit commitment with topology control recourse for power systems with large-scale renewable integration. IEEE Trans. Power Syst. 33(3), 3315–3324 (2018)CrossRefGoogle Scholar
  67. 67.
    Ershun, D., Zhang, N., Hodge, B.-M., Wang, Q., Lu, Z., Kang, C., Kroposki, B., Xia, Q.: Operation of a high renewable penetrated power system with CSP plants: a look-ahead stochastic unit commitment model. IEEE Trans. Power Syst. 34(1), 140–151 (2019)CrossRefGoogle Scholar
  68. 68.
    Ben-Tal, A., Nemirovski, A.: Robust optimization–methodology and applications. Math. Program. 92(3), 453–480 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 41(5), 457–461 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Caunhye, A.M., Cardin, M.-A.: Towards more resilient integrated power grid capacity expansion: a robust optimization approach with operational flexibility. Energy Econ. 72, 20–34 (2018)CrossRefGoogle Scholar
  72. 72.
    Li, J., Li, Z., Liu, F., Ye, H., Zhang, X., Mei, S., Chang, N.: Robust coordinated transmission and generation expansion planning considering ramping requirements and construction periods. IEEE Trans. Power Syst. 33(1), 268–280 (2018)CrossRefGoogle Scholar
  73. 73.
    Ye, H., Li, Z.: Robust security-constrained unit commitment and dispatch with recourse cost requirement. IEEE Trans. Power Syst. 31(5), 3527–3536 (2016)CrossRefGoogle Scholar
  74. 74.
    Bertsimas, D., Litvinov, E., Sun, X.A., Zhao, J., Zheng, T.: Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28(1), 52–63 (2013)CrossRefGoogle Scholar
  75. 75.
    Álvaro, L., Andy Sun, X., Litvinov, E., Zheng, T.: Multi-stage adaptive robust optimization for the unit commitment problem. Oper. Res. 64(1), 32–51 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Lorca, A., Sun, X.A.: Multistage robust unit commitment with dynamic uncertainty sets and energy storage. IEEE Trans. Power Syst. 32(3), 1678–1688 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Genie Industriel, CentraleSupelec, Universite Paris-SaclayGif-sur-YvetteFrance
  2. 2.Chair Systems Science and the Energy Challenge, Fondation Electricie de France (EDF), CentraleSupelec, Universite Paris-SaclayGif-sur-YvetteFrance
  3. 3.Mines ParisTech, PSL Research UniversitySophia AntipolisFrance
  4. 4.Department of Energy, Politecnico di MilanoMilanItaly
  5. 5.Eminent Scholar, Department of Nuclear EnergyKyung Hee UniversitySeoulSouth Korea

Personalised recommendations