Complementability and Maximality in Different Contexts: Ergodic Theory, Brownian and Poly-Adic Filtrations

  • Christophe LeuridanEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 2252)


The notions of complementability and maximality were introduced in 1974 by Ornstein and Weiss in the context of the automorphisms of a probability space, in 2008 by Brossard and Leuridan in the context of the Brownian filtrations, and in 2017 by Leuridan in the context of the poly-adic filtrations indexed by the non-positive integers. We present here some striking analogies and also some differences existing between these three contexts.


Automorphisms of Lebesgue spaces Factors Entropy Filtrations indexed by the non-positive integers Poly-adic filtrations Brownian filtrations Immersed filtrations Complementability Maximality Exchange property 



I thank A. Coquio, J. Brossard, M. Émery, S. Laurent, J.P. Thouvenot for their useful remarks and for stimulating conversations.


  1. 1.
    S. Attal, K. Burdzy, M. Émery, Y. Hu, Sur quelques filtrations et transformations browniennes, in Séminaire de Probabilités, IXXX. Lecture Notes in Mathematics, vol. 1613 (Springer, Berlin, 1995), pp. 56–69Google Scholar
  2. 2.
    K. Berg, Convolution of invariant measures, maximal entropy. Math. Syst. Theory 3(2), 146–150 (1969)MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Brossard, C. Leuridan, Filtrations browniennes et compléments indépendants, in Séminaire de Probabilités, XLI. Lecture Notes in Mathematics, vol. 1934 (2008), pp. 265–278Google Scholar
  4. 4.
    J. Brossard, M. Émery, C. Leuridan, Maximal Brownian motions. Ann. de l’IHP 45(3), 876–886 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    J. Brossard, M. Émery, C. Leuridan, Skew-Product Decomposition of Planar Brownian Motion and Complementability, in Séminaire de Probabilités, XLVI. Lecture Notes in Mathematics, vol. 2123 (Springer, Berlin, 2014), pp. 377–394Google Scholar
  6. 6.
    G. Ceillier, C. Leuridan, Filtrations at the threshold of standardness. Probab. Theory Relat. Fields 158(3–4), 785–808 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    I. Cornfeld, S. Fomin, Y. Sinai, Ergodic theory, in Grundlehren der mathematischen Wissenschaften, vol. 245 (Springer, Berlin, 1982)Google Scholar
  8. 8.
    T. de la Rue, Espaces de Lebesgue, in Séminaire de Probabilités XXVII. Lecture Notes in Mathematics, vol. 1557 (Springer, Berlin, 1993), pp. 15–21Google Scholar
  9. 9.
    M. Émery, On certain almost Brownian filtrations. Ann. de l’IHP Probabilités et Stat. 41, 285–305 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Émery, W. Schachermayer, On Vershik’s standardness criterion and Tsirelson’s notion of cosiness, in Séminaire de Probabilités, XXXV. Lecture Notes in Mathematics, vol. 1755 (Springer, Berlin, 2001), pp. 265–305Google Scholar
  11. 11.
    S. Kalikow, R. McCutcheon, An outline of Ergodic theory, in Cambridge Studies in Advanced Mathematics (Cambridge University, Cambridge, 2010)CrossRefGoogle Scholar
  12. 12.
    S. Laurent, On standardness and I-cosiness, in Séminaire de Probabilités, XLIII. Lecture Notes in Mathematics, vol. 2006 (2011), pp. 127–186Google Scholar
  13. 13.
    S. Laurent, The filtration of erased-word processes, in Séminaire de Probabilités, XLVIII, Lecture Notes in Mathematics, vol. 2168 (2017), pp. 445–458CrossRefGoogle Scholar
  14. 14.
    C. Leuridan, Poly-adic Filtrations, standardness, complementability and maximality. Ann. Probab. 45(2), 1218–1246 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Ornstein, Factors of Bernoulli shifts are Beroulli shifts. Adv. Math. 5, 349–364 (1971)CrossRefGoogle Scholar
  16. 16.
    D. Ornstein, Factors of Bernoulli shifts. Isr. J. Math. 21(2–3), 145–153 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    D. Ornstein, B. Weiss, Finitely determined implies very weak Bernoulli. Isr. J. Math. 17(1), 94–104 (1974)MathSciNetCrossRefGoogle Scholar
  18. 18.
    W. Parry, Entropy and Generators in Ergodic Theory (W.A. Benjamin Inc., Benjamin, 1969)zbMATHGoogle Scholar
  19. 19.
    K. Petersen, Ergodic Theory (Cambridge University, Cambridge, 1981)zbMATHGoogle Scholar
  20. 20.
    M. Smorodinsky, Processes with no standard extension. Isr. J. Math. 107, 327–331 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.P. Thouvenot, Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie. Isr. J. Math. 21, 208–214 (1975)CrossRefGoogle Scholar
  22. 22.
    A. Vershik, Theory of decreasing sequences of measurable partitions. Algebra i Analiz, 6(4), 1–68 (1994). English Translation: St. Petersburg Math. J. 6(4), 705–761 (1995)Google Scholar
  23. 23.
    H. von Weizsäcker, Exchanging the order of taking suprema and countable intersections of σ -algebras. Ann. Inst. H. Poincaré Sect. B 19(1), 91–100 (1983)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut FourierUniversité Grenoble AlpesGrenobleFrance

Personalised recommendations