Advertisement

Recurrence and Transience of Continuous-Time Open Quantum Walks

  • Ivan Bardet
  • Hugo Bringuier
  • Yan PautratEmail author
  • Clément Pellegrini
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2252)

Abstract

This paper is devoted to the study of continuous-time processes known as continuous-time open quantum walks (CTOQW). A CTOQW represents the evolution of a quantum particle constrained to move on a discrete graph, but which also has internal degrees of freedom modeled by a state (in the quantum mechanical sense). CTOQW contain as a special case continuous-time Markov chains on graphs. Recurrence and transience of a vertex are an important notion in the study of Markov chains, and it is known that all vertices must be of the same nature if the Markov chain is irreducible. In the present paper we address the corresponding result in the context of irreducible CTOQW. Because of the “quantum” internal degrees of freedom, CTOQW exhibit non standard behavior, and the classification of recurrence and transience properties obeys a “trichotomy” rather than the classical dichotomy. Essential tools in this paper are the so-called “quantum trajectories” which are jump stochastic differential equations which can be associated with CTOQW.

Notes

Acknowledgements

All four authors are supported by ANR grant StoQ (ANR-14-CE25-0003-01). The research of Y.P. is also supported by ANR grant NONSTOPS (ANR-17-CE40-0006-01, ANR17-CE40-0006-02, ANR-17-CE40-0006-03).

References

  1. 1.
    S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, Open quantum random walks. J. Stat. Phys. 147(4), 832–852 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Attal, F. Petruccione, I. Sinayskiy, Open quantum walks on graphs. Phys. Lett. A 376(18), 1545–1548 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Attal, N. Guillotin-Plantard, C. Sabot, Central limit theorems for open quantum random walks and quantum measurement records. Ann. Henri Poincaré 16(1), 15–43 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Barchielli, V.P. Belavkin, Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A 24(7), 1495–1514 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Bardet, D. Bernard, Y. Pautrat, Passage times, exit times and Dirichlet problems for open quantum walks. J. Stat. Phys. 167(2), 173–204 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Bauer, D. Bernard, A. Tilloy, The open quantum Brownian motions. J. Stat. Mech. Theory Exp. 2014(9), p09001, 48 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Bouten, M. Guţă, H. Maassen, Stochastic Schrödinger equations. J. Phys. A 37(9), 3189–3209 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Carbone, Y. Pautrat, Homogeneous open quantum random walks on a lattice. J. Stat. Phys. 160(5), 1125–1153 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Carbone, Y. Pautrat, Open quantum random walks: reducibility, period, ergodic properties. Ann. Henri Poincaré 17(1), 99–135 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S.L. Carvalho, L.F. Guidi, C.F. Lardizabal, Site recurrence of open and unitary quantum walks on the line. Quantum Inf. Process. 16(1), 32 (2017). Art. 17Google Scholar
  11. 11.
    E.B. Davies, Quantum stochastic processes. II. Commun. Math. Phys. 19, 83–105 (1970)MathSciNetCrossRefGoogle Scholar
  12. 12.
    E.B. Davies, Quantum Theory of Open Systems (Academic/Harcourt Brace Jovanovich Publishers, London/New York, 1976)zbMATHGoogle Scholar
  13. 13.
    J. Dereziński, W. De Roeck, C. Maes, Fluctuations of quantum currents and unravelings of master equations. J. Stat. Phys. 131(2), 341–356 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    K.-J. Engel, R. Nagel, One-parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194 (Springer, New York, 2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. SchnaubeltGoogle Scholar
  15. 15.
    D.E. Evans, R. Høegh-Krohn, Spectral properties of positive maps on C-algebras. J. Lond. Math. Soc. (2) 17(2), 345–355 (1978)MathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Fagnola, R. Rebolledo, Subharmonic projections for a quantum Markov semigroup. J. Math. Phys. 43(2), 1074–1082 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    F. Fagnola, R. Rebolledo, Transience and recurrence of quantum Markov semigroups. Probab. Theory Relat. Fields 126(2), 289–306 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Fagnola, R. Rebolledo, Notes on the qualitative behaviour of quantum Markov semigroups, in Open Quantum Systems. III. Lecture Notes in Mathematics, vol. 1882 (Springer, Berlin, 2006), pp. 161–205zbMATHGoogle Scholar
  19. 19.
    V. Jakšić, C.-A. Pillet, M. Westrich, Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154(1–2), 153–187 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    C.F. Lardizabal, R.R. Souza, Open quantum random walks: ergodicity, hitting times, gambler’s ruin and potential theory. J. Stat. Phys. 164(5), 1122–1156 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    G. Lindblad, On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J.R. Norris, Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2 (Cambridge University Press, Cambridge, 1998). Reprint of 1997 originalGoogle Scholar
  23. 23.
    C. Pellegrini, Existence, uniqueness and approximation of a stochastic Schrödinger equation: the diffusive case. Ann. Probab. 36(6), 2332–2353 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    C. Pellegrini, Poisson and diffusion approximation of stochastic master equations with control. Ann. Henri Poincaré 10(5), 995–1025 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    C. Pellegrini, Continuous time open quantum random walks and non-Markovian Lindblad master equations. J. Stat. Phys. 154(3), 838–865 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    B. Russo, H.A. Dye, A note on unitary operators in C-algebras. Duke Math. J. 33, 413–416 (1966)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Schrader, Perron-Frobenius theory for positive maps on trace ideals (2000). Preprint. arXiv: math-ph/0007020Google Scholar
  28. 28.
    I. Sinayskiy, F. Petruccione, Efficiency of open quantum walk implementation of dissipative quantum computing algorithms. Quantum Inf. Process. 11(5), 1301–1309 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    I. Sinayskiy, F. Petruccione, Quantum optical implementation of open quantum walks. Int. J. Quantum Inf. 12(2), 1461010, 8 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    M.D. Srinivas, E.B. Davies, Photon counting probabilities in quantum optics. Opt. Acta 28(7), 981–996 (1981)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M.M. Wolf, Quantum channels & operations: Guided tour (2012). http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf. Lecture notes based on a course given at the Niels-Bohr Institute

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ivan Bardet
    • 1
  • Hugo Bringuier
    • 2
  • Yan Pautrat
    • 3
    Email author
  • Clément Pellegrini
    • 2
  1. 1.Institut des Hautes Études ScientifiquesUniversité Paris-SaclayBures-sur-YvetteFrance
  2. 2.Institut de Mathématiques de ToulouseUMR5219, UPS IMTToulouse CedexFrance
  3. 3.Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRSUniversité Paris-SaclayOrsayFrance

Personalised recommendations