Advertisement

Brownian Winding Fields

  • Yves Le JanEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2252)

Abstract

The purpose of the present note is to review and improve the convergence of the renormalized winding fields introduced in Camia et al. (Nucl Phys B 902:483–507, 2016) and van de Brug et al. (Electron J Probab 23(81):17, 2018).

Keywords

Brownian loops Windings 

Notes

Acknowledgements

I thank Federico Camia and Marci Lis for interesting discussions and the referee for helpful remarks.

References

  1. 1.
    F. Camia, A. Gandolfi, M. Kleban, Conformal correlation functions in the Brownian loop soup, Nucl. Phys. B 902, 483–507 (2016)Google Scholar
  2. 2.
    C. Garban, J. T. Ferreras, The expected area of a filled planar Brownian loop is Pi/5. Commun. Math. Phys. 264, 797–810 (2006)CrossRefGoogle Scholar
  3. 3.
    J.-P. Kahane, Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9, 105–150 (1985)MathSciNetzbMATHGoogle Scholar
  4. 4.
    G. Lawler, W. Werner, The Brownian loop soup. PTRF 128, 565–588 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Y. Le Jan, Markov paths, loops and fields, in École d’Été de Probabilités de Saint-Flour XXXVIII – 2008. Lecture Notes in Mathematics, vol. 2026 (Springer, Berlin, 2011)Google Scholar
  6. 6.
    Y. Le Jan, Brownian loops topology. Potential Anal. (2019). https://doi.org/10.1007/s11118-019-09765-z
  7. 7.
    Y. Le Jan. Homology of Brownian loops. arXiv: 1610.09784Google Scholar
  8. 8.
    O. Schramm. Scaling Limits of Loop-Erased Random Walks and Uniform Spanning Trees. Israel J. Math. 118, 221–288 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Spitzer, Some theorems concerning 2-dimensional Brownian motion. Trans. Amer. Math. Soc. 87, 187–197 (1958)MathSciNetzbMATHGoogle Scholar
  10. 10.
    K. Symanzik, Euclidean quantum field theory, in Scuola intenazionale di Fisica “Enrico Fermi”. XLV Corso (Academic, Cambridge, 1969), pp. 152–223Google Scholar
  11. 11.
    T. van de Brug, F. Camia, M. Lis, Spin systems from loop soups. Electron. J. Probab. 23(81), 77 (2018)Google Scholar
  12. 12.
    W. Werner. On the spatial Markov property of soups of unoriented and oriented loops. in Séminaire de de Probabilités XLVIII. Lecture Notes in Mathematics, vol. 2168 (Springer, Berlin, 2016), pp. 481–503Google Scholar
  13. 13.
    M. Yor, Loi de l’indice du lacet Brownien, et distribution de Hartman-Watson, Z. Wahrsch. Verw. Gebiete 53, 71–95 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.NYU ShanghaiShanghaiChina
  2. 2.Département de MathématiqueUniversité Paris-SudOrsayFrance

Personalised recommendations