Advertisement

Heat Kernel Coupled with Geometric Flow and Ricci Flow

  • Koléhè A. Coulibaly-PasquierEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2252)

Abstract

We prove on-diagonal upper bound for the minimal fundamental solution of the heat equation evolving under geometric flow. In the case of Ricci flow, with non-negative Ricci curvature and a condition on the growth of volume of ball for the initial manifold, we derive Gaussian bounds for the minimal fundamental solution of the heat equation, and then for the conjugate heat equation.

References

  1. 1.
    M. Arnaudon, K.A. Coulibaly, A. Thalmaier, Brownian motion with respect to a metric depending on time: definition, existence and applications to Ricci flow. C.R. Math. 346(13–14), 773–778 (2008)Google Scholar
  2. 2.
    M. Arnaudon, K.A. Coulibaly, A. Thalmaier, Horizontal diffusion in C1 path space, in Séminaire de Probabilités XLIII, Lecture Notes in Mathematics, vol. 2006 (Springer, Berlin, 2011), pp. 73–94CrossRefGoogle Scholar
  3. 3.
    M. Arnaudon, A. Thalmaier, F.-Y. Wang, Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull. Sci. Math. 130(3), 223–233 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Bakry, I. Gentil, M. Ledoux. On Harnack inequalities and optimal transportation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14(3), 705–727 (2015)Google Scholar
  5. 5.
    X. Cao, Q.S. Zhang, The conjugate heat equation and ancient solutions of the Ricci flow. Adv. Math. 228(5), 2891–2919 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    B.-L. Chen, X.-P. Zhu, Uniqueness of the Ricci flow on complete noncompact manifolds. J. Differ. Geom. 74(1), 119–154 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    L.-J. Cheng, Diffusion semigroup on manifolds with time-dependent metrics. Forum Math. 29(4), 775–798 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci flow: techniques and applications. Part II, in Mathematical Surveys and Monographs, vol. 144 (American Mathematical Society, Providence, 2008). Analytic aspectsGoogle Scholar
  9. 9.
    B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects, in Mathematical Surveys and Monographs, vol. 163 (American Mathematical Society, Providence, 2010)Google Scholar
  10. 10.
    K.A. Coulibaly-Pasquier, Brownian motion with respect to time-changing Riemannian metrics, applications to Ricci flow. Ann. Inst. Henri Poincaré Probab. Stat. 47(2), 515–538 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    K.A. Coulibaly-Pasquier, Some stochastic process without birth, linked to the mean curvature flow. Ann. Probab. 39(4), 1305–1331 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Gage, R.S. Hamilton, The heat equation shrinking convex plane curves. J. Differ. Geom. 23(1), 69–96 (1986)MathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, 3rd edn. Universitext (Springer, Berlin, 2004)CrossRefGoogle Scholar
  14. 14.
    F.-Z. Gong, F.-Y. Wang, Heat kernel estimates with application to compactness of manifolds. Q. J. Math. 52(2), 171–180 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Grigor ́yan, Integral maximum principle and its applications. Proc. Roy. Soc. Edinburgh Sect. A 124(2), 353–362 (1994)Google Scholar
  16. 16.
    A. Grigor ́yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differ. Geom. 45(1), 33–52 (1997)Google Scholar
  17. 17.
    C.M. Guenther, The fundamental solution on manifolds with time-dependent metrics. J. Geom. Anal. 12(3), 425–436 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R.S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    E.P. Hsu, Stochastic analysis on manifolds, in Graduate Studies in Mathematics, vol. 38 (American Mathematical Society, Providence, 2002)Google Scholar
  20. 20.
    K. Kuwada, R. Philipowski, Non-explosion of diffusion processes on manifolds with time-dependent metric. Math. Z. 268(3–4), 979–991 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    R.J. McCann, P.M. Topping, Ricci flow, entropy and optimal transportation. Am. J. Math. 132(3), 711–730 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    L. Ni, Ricci flow and nonnegativity of sectional curvature. Math. Res. Lett. 11(5–6), 883–904 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    W.-X. Shi, Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30(1), 223–301 (1989)MathSciNetCrossRefGoogle Scholar
  25. 25.
    F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Relat. Fields 109(3), 417–424 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut Élie Cartan de Lorraine, UMR 7502Université de Lorraine and CNRSVillers-lès-NancyFrance

Personalised recommendations