Advertisement

Biologically Defined or Biologically Informed Traits Are More Heritable Than Clinically Defined Ones: The Case of Oral and Dental Phenotypes

  • Cary S. Agler
  • Kevin Moss
  • Kamaira H. Philips
  • Julie T. Marchesan
  • Miguel Simancas-Pallares
  • James D. Beck
  • Kimon DivarisEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1197)

Abstract

The genetic basis of oral health has long been theorized, but little information exists on the heritable variance in common oral and dental disease traits explained by the human genome. We sought to add to the evidence base of heritability of oral and dental traits using high-density genotype data in a well-characterized community-based cohort of middle-age adults. We used genome-wide association (GWAS) data combined with clinical and biomarker information in the Dental Atherosclerosis Risk In Communities (ARIC) cohort. Genotypes comprised SNPs directly typed on the Affymetrix Genome-Wide Human SNP Array 6.0 chip with minor allele frequency of >5% (n = 656,292) or were imputed using HapMap II-CEU (n = 2,104,905). We investigated 30 traits including “global” [e.g., number of natural teeth (NT) and incident tooth loss], clinically defined (e.g., dental caries via the DMFS index, periodontitis via the CDC/AAP and WW17 classifications), and biologically informed (e.g., subgingival pathogen colonization and “complex” traits). Heritability (i.e., variance explained; h2) was calculated using Visscher’s Genome-wide Complex Trait Analysis (GCTA), using a random-effects mixed linear model and restricted maximum likelihood (REML) regression adjusting for ancestry (10 principal components), age, and sex. Heritability estimates were modest for clinical traits—NT = 0.11 (se = 0.07), severe chronic periodontitis (CDC/AAP) = 0.22 (se = 0.19), WW17 Stage 4 vs. 1/2 = 0.15 (se = 0.11). “High gingival index” and “high red complex colonization” had h2 > 0.50, while a periodontal complex trait defined by high IL-1β GCF expression and Aggregatibacter actinomycetemcomitans subgingival colonization had the highest h2 = 0.72 (se = 0.32). Our results indicate that all GWAS SNPs explain modest levels of the observed variance in clinical oral and dental measures. Subgingival bacterial colonization and complex phenotypes encompassing both bacterial colonization and local inflammatory response had the highest heritability, suggesting that these biologically informed traits capture aspects of the disease process and are promising targets for genomics investigations, according to the notion of precision oral health.

Notes

Acknowledgements

Drs. Divaris and Agler are supported by a grant from the National Institutes of Health/National Institute of Dental and Craniofacial Health Research (NIH/NIDCR) U01-DE025046. Dr. Marchesan is supported by K01-DE027087.

References

  1. Agler, C. S., Shungin, D., Ferreira Zandoná, A. G., Schmadeke, P., Basta, P. V., Luo, J., et al. (2019). Protocols, methods, and tools for genome-wide association studies (GWAS) of dental traits. Methods in Molecular Biology, 1922, 493–509.  https://doi.org/10.1007/978-1-4939-9012-2_38.CrossRefPubMedGoogle Scholar
  2. Beck, J. D., Elter, J. R., Heiss, G., Couper, D., Mauriello, S. M., & Offenbacher, S. (2001). Relationship of periodontal disease to carotid artery intima-media wall thickness: The atherosclerosis risk in communities (ARIC) study. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(11), 1816–1822.CrossRefGoogle Scholar
  3. Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14(8), 746–754.  https://doi.org/10.1038/mp.2009.44.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C., et al. (2019). The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Research, 47(D1), D1005–D1D12.  https://doi.org/10.1093/nar/gky1120.CrossRefPubMedGoogle Scholar
  5. Carlos, J. P., Wolfe, M. D., & Kingman, A. (1986). The extent and severity index: A simple method for use in epidemiologic studies of periodontal disease. Journal of Clinical Periodontology, 13(5), 500–505.CrossRefGoogle Scholar
  6. Chen, R., & Snyder, M. (2013). Promise of personalized omics to precision medicine. Wiley Interdisciplinary Reviews. Systems Biology and Medicine, 5(1), 73–82.  https://doi.org/10.1002/wsbm.1198.CrossRefPubMedGoogle Scholar
  7. Chung, K. F., & Adcock, I. M. (2019). Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy.  https://doi.org/10.1111/all.13771.
  8. Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. The New England Journal of Medicine, 372(9), 793–795.  https://doi.org/10.1056/NEJMp1500523.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Divaris, K. (2017). Fundamentals of precision medicine. The Compendium of Continuing Education in Dentistry, 38(8 Suppl), 30–32.Google Scholar
  10. Divaris, K. (2019a). Searching deep and wide: Advances in the molecular understanding of dental caries and periodontal disease. Advances in Dental Research. In Press.Google Scholar
  11. Divaris, K. (2019b). The era of the genome and dental medicine. Journal of Dental Research, 98, 949.CrossRefGoogle Scholar
  12. Divaris, K., Monda, K. L., North, K. E., Olshan, A. F., Lange, E. M., Moss, K., et al. (2012). Genome-wide association study of periodontal pathogen colonization. Journal of Dental Research, 91(7 Suppl), 21S–28S.CrossRefGoogle Scholar
  13. Divaris, K., Monda, K. L., North, K. E., Olshan, A. F., Reynolds, L. M., Hsueh, W. C., et al. (2013). Exploring the genetic basis of chronic periodontitis: A genome-wide association study. Human Molecular Genetics, 22(11), 2312–2324.  https://doi.org/10.1093/hmg/ddt065.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Frencken, J. E., Sharma, P., Stenhouse, L., Green, D., Laverty, D., & Dietrich, T. (2017). Global epidemiology of dental caries and severe periodontitis—a comprehensive review. Journal of Clinical Periodontology, 44(Suppl 18), S94–S105.  https://doi.org/10.1111/jcpe.12677.CrossRefPubMedGoogle Scholar
  15. Ghiassian, S. D., Menche, J., Chasman, D. I., Giulianini, F., Wang, R., Ricchiuto, P., et al. (2016). Endophenotype network models: Common Core of complex diseases. Scientific Reports, 6, 27414.  https://doi.org/10.1038/srep27414.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gibbs, R. M., Lipnick, S., Bateman, J. W., Chen, L., Cousins, H. C., Hubbard, E. G., et al. (2018). Toward precision medicine for neurological and neuropsychiatric disorders. Cell Stem Cell, 23(1), 21–24.  https://doi.org/10.1016/j.stem.2018.05.019.CrossRefPubMedGoogle Scholar
  17. Insel, T. R., & Cuthbert, B. N. (2015). Medicine. Brain disorders? Precisely. Science, 348(6234), 499–500.  https://doi.org/10.1126/science.aab2358.CrossRefPubMedGoogle Scholar
  18. investigators, T. A. R. I. C. (1989). The atherosclerosis risk in communities (ARIC) study: Design and objectives. American Journal of Epidemiology, 129(4), 687–702.CrossRefGoogle Scholar
  19. Kay, E. J., & Locker, D. (1996). Is dental health education effective? A systematic review of current evidence. Community Dentistry and Oral Epidemiology, 24(4), 231–235.CrossRefGoogle Scholar
  20. Krishna Kumar, S., Feldman, M. W., Rehkopf, D. H., & Tuljapurkar, S. (2016). Limitations of GCTA as a solution to the missing heritability problem. Proceedings of the National Academy of Sciences of the United States of America, 113(1), E61–E70.  https://doi.org/10.1073/pnas.1520109113.CrossRefPubMedGoogle Scholar
  21. Lee, J. J., & Chow, C. C. (2014). Conditions for the validity of SNP-based heritability estimation. Human Genetics, 133(8), 1011–1022.  https://doi.org/10.1007/s00439-014-1441-5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Leopold, J. A., & Loscalzo, J. (2018). Emerging role of precision medicine in cardiovascular disease. Circulation Research, 122(9), 1302–1315.  https://doi.org/10.1161/CIRCRESAHA.117.310782.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lopez, R., Hujoel, P., & Belibasakis, G. N. (2015). On putative periodontal pathogens: An epidemiological perspective. Virulence, 6(3), 249–257.  https://doi.org/10.1080/21505594.2015.1014266.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753.  https://doi.org/10.1038/nature08494.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Marchesan, J. T., Jiao, Y., Moss, K., Divaris, K., Seaman, W., Webster-Cyriaque, J., et al. (2017). Common polymorphisms in IFI16 and AIM2 genes are associated with periodontal disease. Journal of Periodontology, 88(7), 663–672.  https://doi.org/10.1902/jop.2017.160553.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Morelli, T., Moss, K. L., Beck, J., Preisser, J. S., Wu, D., Divaris, K., et al. (2017). Derivation and validation of the periodontal and tooth profile classification system for patient stratification. Journal of Periodontology, 88(2), 153–165.CrossRefGoogle Scholar
  27. Morelli, T., Moss, K. L., Preisser, J. S., Beck, J. D., Divaris, K., Wu, D., et al. (2018). Periodontal profile classes predict periodontal disease progression and tooth loss. Journal of Periodontology, 89(2), 148–156.  https://doi.org/10.1002/JPER.17-0427.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Morelli, T., Agler, C. S., & Divaris, K. (2019). Genomics of periodontal disease and tooth morbidity. Periodontology 2000.Google Scholar
  29. Naorungroj, S., Slade, G. D., Divaris, K., Heiss, G., Offenbacher, S., & Beck, J. D. (2017). Racial differences in periodontal disease and 10-year self-reported tooth loss among late middle-aged and older adults: The dental ARIC study. Journal of Public Health Dentistry, 77(4), 372–382.  https://doi.org/10.1111/jphd.12226.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nibali, L., Bayliss-Chapman, J., Almofareh, S. A., Zhou, Y., Divaris, K., & Vieira, A. R. (2019). What is the heritability of periodontal disease? A systematic review. Journal of Dental Research, 98(6), 632–641.CrossRefGoogle Scholar
  31. Offenbacher, S., Divaris, K., Barros, S. P., Moss, K. L., Marchesan, J. T., Morelli, T., et al. (2016). Genome-wide association study of biologically informed periodontal complex traits offers novel insights into the genetic basis of periodontal disease. Human Molecular Genetics, 25(10), 2113–2129.CrossRefGoogle Scholar
  32. Offenbacher, S., Jiao, Y., Kim, S. J., Marchesan, J., Moss, K. L., Jing, L., et al. (2018). GWAS for interleukin-1β levels in gingival crevicular fluid identifies IL37 variants in periodontal inflammation. Nature Communications, 9(1), 3686.  https://doi.org/10.1038/s41467-018-05940-9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Page, R. C., & Eke, P. I. (2007). Case definitions for use in population-based surveillance of periodontitis. Journal of Periodontology, 78(7 Suppl), 1387–1399.CrossRefGoogle Scholar
  34. Papapanou, P. N., Sanz, M., Buduneli, N., Dietrich, T., Feres, M., Fine, D. H., et al. (2018). Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Periodontology, 89(Suppl 1), S173–SS82.  https://doi.org/10.1002/JPER.17-0721.CrossRefPubMedGoogle Scholar
  35. Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38(8), 904–909.CrossRefGoogle Scholar
  36. Ramanan, V. K., & Saykin, A. J. (2013). Pathways to neurodegeneration: Mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. American Journal of Neurodegenerative Disease, 2(3), 145–175.PubMedPubMedCentralGoogle Scholar
  37. Rhodin, K., Divaris, K., North, K. E., Barros, S. P., Moss, K., Beck, J. D., et al. (2014). Chronic periodontitis genome-wide association studies: Gene-centric and gene set enrichment analyses. Journal of Dental Research, 93(9), 882–890.  https://doi.org/10.1177/0022034514544506.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Robinson, P. N. (2012). Deep phenotyping for precision medicine. Human Mutation, 33(5), 777–780.  https://doi.org/10.1002/humu.22080.CrossRefPubMedGoogle Scholar
  39. Rockhill, B. (2001). The privatization of risk. American Journal of Public Health, 91(3), 365–368.CrossRefGoogle Scholar
  40. Rose, G. (2001). Sick individuals and sick populations. International Journal of Epidemiology, 30(3), 427–432.CrossRefGoogle Scholar
  41. Rutter, M. (2007). Gene-environment interdependence. Developmental Science, 10(1), 12–18.CrossRefGoogle Scholar
  42. Sanders, A. E., Wong, Q., Sofer, T., Agler, C., Shaffer, J. R., Beck, J. D., et al. (2017). Genome-wide association study of chronic periodontitis in the Hispanic/Latino community: HCHS/SOL. Journal of Dental Research, 96(1), 64–72.CrossRefGoogle Scholar
  43. Sen, S., Giamberardino, L. D., Moss, K., Morelli, T., Rosamond, W. D., Gottesman, R. F., et al. (2018). Periodontal disease, regular dental care use, and incident ischemic stroke. Stroke, 49(2), 355–362.  https://doi.org/10.1161/STROKEAHA.117.018990.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sheiham, A., & Watt, R. G. (2000). The common risk factor approach: A rational basis for promoting oral health. Community Dentistry and Oral Epidemiology, 28(6), 399–406.CrossRefGoogle Scholar
  45. Shungin, D., Haworth, S., Divaris, K., Agler, C. S., Kamatani, Y., Keun Lee, M., et al. (2019). Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. Nature Communications, 10(1), 2773.  https://doi.org/10.1038/s41467-019-10630-1.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wang, X., Shaffer, J. R., Zeng, Z., Begum, F., Vieira, A. R., Noel, J., et al. (2012). Genome-wide association scan of dental caries in the permanent dentition. BMC Oral Health, 12, 57.  https://doi.org/10.1186/1472-6831-12-57.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Watt, R. G. (2007). From victim blaming to upstream action: Tackling the social determinants of oral health inequalities. Community Dentistry and Oral Epidemiology, 35(1), 1–11.CrossRefGoogle Scholar
  48. Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88(1), 76–82.  https://doi.org/10.1016/j.ajhg.2010.11.011.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2013). Genome-wide complex trait analysis (GCTA): Methods, data analyses, and interpretations. Methods in Molecular Biology, 1019, 215–236.  https://doi.org/10.1007/978-1-62703-447-0_9.CrossRefPubMedGoogle Scholar
  50. Yang, J., Lee, S. H., Wray, N. R., Goddard, M. E., & Visscher, P. M. (2016). GCTA-GREML accounts for linkage disequilibrium when estimating genetic variance from genome-wide SNPs. Proceedings of the National Academy of Sciences of the United States of America, 113(32), E4579–E4580.  https://doi.org/10.1073/pnas.1602743113.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zaitlen, N., & Kraft, P. (2012). Heritability in the genome-wide association era. Human Genetics, 131(10), 1655–1664.  https://doi.org/10.1007/s00439-012-1199-6.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang, S., Divaris, K., Moss, K., Yu, N., Barros, S., Marchesan, J., et al. (2016). The novel ASIC2 locus is associated with severe gingival inflammation. JDR Clinical & Translational Research, 1(2), 163–170.  https://doi.org/10.1177/2380084416645290.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cary S. Agler
    • 1
  • Kevin Moss
    • 1
  • Kamaira H. Philips
    • 1
  • Julie T. Marchesan
    • 2
  • Miguel Simancas-Pallares
    • 1
  • James D. Beck
    • 2
    • 3
  • Kimon Divaris
    • 3
    • 4
    Email author
  1. 1.Division of Oral and Craniofacial Health SciencesAdams School of Dentistry, University of North Carolina-Chapel HillChapel HillUSA
  2. 2.Division of Comprehensive Oral Health - PeriodontologyAdams School of Dentistry, University of North Carolina-Chapel HillChapel HillUSA
  3. 3.Department of EpidemiologyGillings School of Global Public Health, University of North Carolina-Chapel HillChapel HillUSA
  4. 4.Division of Pediatrics and Public HealthAdams School of Dentistry, University of North Carolina-Chapel HillChapel HillUSA

Personalised recommendations