Advertisement

Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging

  • J. L. EbersoleEmail author
  • L. Orraca
  • M. J. Novak
  • S. Kirakodu
  • J. Gonzalez-Martinez
  • O. A. Gonzalez
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1197)

Abstract

Epithelial cells and functions of the epithelium are critical to the health of the oral cavity. We used a nonhuman primate model to profile the transcriptome of gingival tissues in health across the lifespan and hypothesized that in older animals, epithelial-related transcriptome patterns would reflect epithelial cells that are aggressively responsive to the surrounding environment and less able to modulate and resolve the noxious challenge from the bacteria. Rhesus monkeys (n = 34) with a healthy periodontium were distributed into four groups: ≤3 years (young), 3–7 years (adolescent), 12–16 years (adult), and 18–23 years (aged), and a buccal gingival sample from the premolar/molar region of each animal was obtained. RNA was subjected to a microarray analysis (GeneChip® Rhesus Macaque Genome Array, Affymetrix), and 336 genes examined that are linked to epithelium and epithelial cell functions categorized into 9 broad functional groups: extracellular matrix and cell structure; extracellular matrix remodeling enzymes; cell adhesion molecules, cytoskeleton regulation; inflammatory response; growth factors; kinases/cell signaling; cell surface receptors; junction associated molecules; autophagy/apoptosis; antimicrobial peptides; and transcription factors. Total of 255 genes displayed a normalized signal >100, and differences across the age groups were observed primarily in extracellular matrix and cell structure, cell adhesion molecules, and cell surface receptor gene categories with elevations in the aged tissues. Keratins 2, 5, 6B, 13, 16, 17 were all significantly increased in healthy-aged tissues versus adults, and keratins 1 and 2 were significantly decreased in young animals. Approximately 15 integrins are highly expressed in the gingival tissues across the age groups with only ITGA8, ITGAM (CD11b), and ITGB2 significantly increased in the aged tissues. Little impact of aging on desmosomal/hemidesmosomal genes was noted. These results suggest that healthy gingival aging has a relatively limited impact on the broader functions of the epithelium and epithelial cells, with some effects on genes for extracellular matrix and cell adhesion molecules (e.g., integrins). Thus, while there is a substantial impact of aging on immune system targets even in healthy gingiva, it appears that the epithelial barrier remains reasonably molecularly intact in this model system.

Notes

Acknowledgements

This work was supported by National Institute of Health grants P20GM103538 and UL1TR000117. We express our gratitude to the Caribbean Primate Research Center (CPRC) supported by grant P40RR03640, and the Microarray Core of University Kentucky for their invaluable technical assistance. We thank M. Kirakodu for data management support.

References

  1. Abbayya, K., Puthanakar, N. Y., Naduwinmani, S., & Chidambar, Y. S. (2015). Association between periodontitis and Alzheimer’s disease. North American Journal of Medical Sciences, 7, 241–246.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahluwalia, B., Magnusson, M. K., & Ohman, L. (2017). Mucosal immune system of the gastrointestinal tract: Maintaining balance between the good and the bad. Scandinavian Journal of Gastroenterology, 52, 1185–1193.CrossRefGoogle Scholar
  3. Albandar, J. M., & Tinoco, E. M. (2002). Global epidemiology of periodontal diseases in children and young persons. Periodontology 2000, 29, 153–176.CrossRefGoogle Scholar
  4. Barak, S., Oettinger-Barak, O., Oettinger, M., Machtei, E. E., Peled, M., & Ohel, G. (2003). Common oral manifestations during pregnancy: A review. Obstetrical & Gynecological Survey, 58, 624–628.CrossRefGoogle Scholar
  5. Belibasakis, G. N. (2018). Microbiological changes of the ageing oral cavity. Archives of Oral Biology, 96, 230–232.CrossRefGoogle Scholar
  6. Belibasakis, G. N., Kast, J. I., Thurnheer, T., Akdis, C. A., & Bostanci, N. (2015). The expression of gingival epithelial junctions in response to subgingival biofilms. Virulence, 6, 704–709.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bimstein, E., & Ebersole, J. L. (1989). The age-dependent reaction of the periodontal tissues to dental plaque. ASDC Journal of Dentistry for Children, 56, 358–362.PubMedGoogle Scholar
  8. Bimstein, E., Ram, D., Irshied, J., Naor, R., & Sela, M. N. (2002). Periodontal diseases, caries, and microbial composition of the subgingival plaque in children: A longitudinal study. ASDC Journal of Dentistry for Children, 69, 133–137. 123.PubMedGoogle Scholar
  9. Bimstein, E., Huja, P. E., & Ebersole, J. L. (2013). The potential lifespan impact of gingivitis and periodontitis in children. The Journal of Clinical Pediatric Dentistry, 38, 95–99.CrossRefGoogle Scholar
  10. Bosshardt, D. D., & Lang, N. P. (2005). The junctional epithelium: From health to disease. Journal of Dental Research, 84, 9–20.CrossRefGoogle Scholar
  11. Brown, A. J., et al. (2017). “Chemokine CXCL7 Heterodimers: Structural Insights, CXCR2 Receptor Function, and Glycosaminoglycan Interactions.” Int J Mol Sci 18(4).Google Scholar
  12. Cardoso, E. M., Reis, C., & Manzanares-Cespedes, M. C. (2018). Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. Postgraduate Medicine, 130, 98–104.CrossRefGoogle Scholar
  13. Chapple, I. L., Van der Weijden, F., Dorfer, C., et al. (2015). Primary prevention of periodontitis: Managing gingivitis. Journal of Clinical Periodontology, 42, S71.CrossRefGoogle Scholar
  14. Dale, B. A. (2002). Periodontal epithelium: A newly recognized role in health and disease. Periodontology 2000, 30, 70–78.CrossRefGoogle Scholar
  15. De Lorenzo, G., Ferrari, S., Cervone, F., & Okun, E. (2018). Extracellular DAMPs in plants and mammals: Immunity, tissue damage and repair. Trends in Immunology, 39, 937–950.CrossRefGoogle Scholar
  16. Desurmont, T., Skrypek, N., Duhamel, A., et al. (2015). Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival. Cancer Science, 106, 262–269.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Doles, J., Storer, M., Cozzuto, L., Roma, G., & Keyes, W. M. (2012). Age-associated inflammation inhibits epidermal stem cell function. Genes & Development, 26, 2144–2153.CrossRefGoogle Scholar
  18. Ebersole, J. L., Steffen, M. J., Gonzalez-Martinez, J., & Novak, M. J. (2008). Effects of age and oral disease on systemic inflammatory and immune parameters in nonhuman primates. Clinical and Vaccine Immunology, 15, 1067–1075.CrossRefGoogle Scholar
  19. Ebersole, J. L., Kirakodu, S., Novak, M. J., et al. (2014). Cytokine gene expression profiles during initiation, progression and resolution of periodontitis. Journal of Clinical Periodontology, 41, 853.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ebersole, J. L., Kirakodu, S. S., Novak, M. J., et al. (2016a). Transcriptome analysis of B cell immune functions in periodontitis: Mucosal tissue responses to the oral microbiome in aging. Frontiers in Immunology, 7, 272.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ebersole, J. L., Kirakodu, S., Novak, M. J., et al. (2016b). Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. Molecular Oral Microbiology, 31, 18–32.CrossRefGoogle Scholar
  22. Ebersole, J. L., Dawson, D., 3rd, Emecen-Huja, P., et al. (2017). The periodontal war: Microbes and immunity. Periodontology 2000, 75, 52–115.CrossRefGoogle Scholar
  23. Ebersole, J. L., Novak, M. J., Orraca, L., et al. (2018). Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. Immunology, 154, 452–464.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gonzalez, O. A., Stromberg, A. J., Huggins, P. M., Gonzalez-Martinez, J., Novak, M. J., & Ebersole, J. L. (2011). Apoptotic genes are differentially expressed in aged gingival tissue. Journal of Dental Research, 90, 880–886.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gonzalez, O. A., John Novak, M., Kirakodu, S., et al. (2013). Effects of aging on apoptosis gene expression in oral mucosal tissues. Apoptosis, 18, 249–259.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gonzalez, O. A., Novak, M. J., Kirakodu, S., et al. (2014). Comparative analysis of gingival tissue antigen presentation pathways in ageing and periodontitis. Journal of Clinical Periodontology, 41, 327–339.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gonzalez, O. A., Novak, M. J., Kirakodu, S., et al. (2015). Differential gene expression profiles reflecting macrophage polarization in aging and periodontitis gingival tissues. Immunological Investigations, 44, 643–664.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gonzalez, O. A., Kirakodu, S., Novak, M. J., et al. (2018). Comparative analysis of microbial sensing molecules in mucosal tissues with aging. Immunobiology, 223, 279–287.CrossRefGoogle Scholar
  29. Gumus, P., Ozturk, V. O., Bozkurt, E., & Emingil, G. (2016). Evaluation of the gingival inflammation in pregnancy and postpartum via 25-hydroxy-vitamin D3, prostaglandin E2 and TNF-alpha levels in saliva. Archives of Oral Biology, 63(1–6), 1.CrossRefGoogle Scholar
  30. Guncu, G. N., Yilmaz, D., Kononen, E., & Gursoy, U. K. (2015). Salivary antimicrobial peptides in early detection of periodontitis. Frontiers in Cellular and Infection Microbiology, 5, 99.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gursoy, M., Zeidan-Chulia, F., Kononen, E., et al. (2014). Pregnancy-induced gingivitis and OMICS in dentistry: In silico modeling and in vivo prospective validation of estradiol-modulated inflammatory biomarkers. Omics: A Journal of Integrative Biology, 18, 582–590.CrossRefGoogle Scholar
  32. Hajishengallis, G. (2014). Aging and its impact on innate immunity and inflammation: Implications for periodontitis. Journal of Oral Biosciences/JAOB, Japanese Association for Oral Biology, 56, 30–37.PubMedCentralPubMedGoogle Scholar
  33. Hajishengallis, G., & Lamont, R. J. (2016). Dancing with the stars: How choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends in Microbiology, 24, 477–489.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hatakeyama, S., Yaegashi, T., Oikawa, Y., et al. (2006). Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia. Journal of Periodontal Research, 41, 322–328.CrossRefGoogle Scholar
  35. Ho, S., Pothoulakis, C., & Koon, H. W. (2013). Antimicrobial peptides and colitis. Current Pharmaceutical Design, 19, 40–47.PubMedPubMedCentralGoogle Scholar
  36. Huttner, E. A., Machado, D. C., de Oliveira, R. B., Antunes, A. G., & Hebling, E. (2009). Effects of human aging on periodontal tissues. Special Care in Dentistry, 29, 149–155.CrossRefGoogle Scholar
  37. Icer, M. A., & Gezmen-Karadag, M. (2018). The multiple functions and mechanisms of osteopontin. Clinical Biochemistry, 59, 17–24.CrossRefGoogle Scholar
  38. Jang, D. H., Bhawal, U. K., Min, H. K., Kang, H. K., Abiko, Y., & Min, B. M. (2015). A transcriptional roadmap to the senescence and differentiation of human oral keratinocytes. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 70, 20–32.CrossRefGoogle Scholar
  39. Jenkins, W. M., & Papapanou, P. N. (2001). Epidemiology of periodontal disease in children and adolescents. Periodontology 2000, 26, 16–32.CrossRefGoogle Scholar
  40. Jin, G., & Weinberg, A. (2018). Human antimicrobial peptides and cancer. Seminars in Cell & Developmental Biology, 88, 156–162.CrossRefGoogle Scholar
  41. Kinane, D. F., & Hodge, P. J. (2001). Periodontal disease in children and adolescents: Introduction and classification. Periodontology 2000, 26, 7–15.CrossRefGoogle Scholar
  42. Kumar, P. S. (2013). Oral microbiota and systemic disease. Anaerobe, 24, 90–93.CrossRefGoogle Scholar
  43. Lamont, R. J., & Hajishengallis, G. (2015). Polymicrobial synergy and dysbiosis in inflammatory disease. Trends in Molecular Medicine, 21, 172–183.CrossRefGoogle Scholar
  44. Lamster, I. B., Asadourian, L., Del Carmen, T., & Friedman, P. K. (2016). The aging mouth: Differentiating normal aging from disease. Periodontology 2000, 72, 96–107.CrossRefGoogle Scholar
  45. Lang, N. P., Schatzle, M. A., & Loe, H. (2009). Gingivitis as a risk factor in periodontal disease. Journal of Clinical Periodontology, 36(Suppl 10), 3–8.CrossRefGoogle Scholar
  46. Loe, H., Anerud, A., Boysen, H., & Morrison, E. (1986). Natural history of periodontal disease in man. Rapid, moderate and no loss of attachment in Sri Lankan laborers 14 to 46 years of age. Journal of Clinical Periodontology, 13, 431–445.CrossRefGoogle Scholar
  47. Maddi, A., & Scannapieco, F. A. (2013). Oral biofilms, oral and periodontal infections, and systemic disease. American Journal of Dentistry, 26, 249–254.PubMedGoogle Scholar
  48. McCormick, T. S., & Weinberg, A. (2010). Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontology 2000, 54, 195–206.CrossRefGoogle Scholar
  49. Meka, A., Bakthavatchalu, V., Sathishkumar, S., et al. (2010). Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles. Molecular Oral Microbiology, 25, 61–74.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Modeer, T., & Wondimu, B. (2000). Periodontal diseases in children and adolescents. Dental Clinics of North America, 44, 633–658.PubMedGoogle Scholar
  51. Moorefield, E. C., Andres, S. F., Blue, R. E., et al. (2017). Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging, 9, 1898–1915.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nassar, M., Tabib, Y., Capucha, T., et al. (2017). GAS6 is a key homeostatic immunological regulator of host-commensal interactions in the oral mucosa. Proceedings of the National Academy of Sciences of the United States of America, 114, E337–E346.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Olive, C. (2012). Pattern recognition receptors: Sentinels in innate immunity and targets of new vaccine adjuvants. Expert Review of Vaccines, 11, 237–256.CrossRefGoogle Scholar
  54. Papapanou, P. N., & Susin, C. (2017). Periodontitis epidemiology: Is periodontitis under-recognized, over-diagnosed, or both? Periodontology 2000, 75, 45–51.CrossRefGoogle Scholar
  55. Pardo-Camacho, C., Gonzalez-Castro, A. M., Rodino-Janeiro, B. K., Pigrau, M., & Vicario, M. (2018). Epithelial immunity: Priming defensive responses in the intestinal mucosa. American Journal of Physiology. Gastrointestinal and Liver Physiology, 314, G247–G255.CrossRefGoogle Scholar
  56. Parrish, A. R. (2017). The impact of aging on epithelial barriers. Tissue Barriers, 5, e1343172.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Partida-Rodriguez, O., Serrano-Vazquez, A., Nieves-Ramirez, M. E., et al. (2017). Human intestinal microbiota: Interaction between parasites and the host immune response. Archives of Medical Research, 48, 690–700.CrossRefGoogle Scholar
  58. Patel, S. (2018). Danger-associated molecular patterns (DAMPs): The derivatives and triggers of inflammation. Current Allergy and Asthma Reports, 18, 63.CrossRefGoogle Scholar
  59. Patsouras, M. D., Sikara, M. P., Grika, E. P., Moutsopoulos, H. M., Tzioufas, A. G., & Vlachoyiannopoulos, P. G. (2015). Elevated expression of platelet-derived chemokines in patients with antiphospholipid syndrome. Journal of Autoimmunity, 65, 30–37.CrossRefGoogle Scholar
  60. Rajaee, A., Barnett, R., & Cheadle, W. G. (2018). Pathogen- and danger-associated molecular patterns and the cytokine response in sepsis. Surgical Infections, 19, 107–116.CrossRefGoogle Scholar
  61. Sakai, T., Kiyoshima, T., Kobayashi, I., et al. (1999). Age-dependent changes in the distribution of BrdU- and TUNEL-positive cells in the murine gingival tissue. Journal of Periodontology, 70, 973–981.CrossRefGoogle Scholar
  62. Schenkein, H. A., Berry, C. R., Burmeister, J. A., et al. (2003). Anti-cardiolipin antibodies in sera from patients with periodontitis. Journal of Dental Research, 82, 919–922.CrossRefGoogle Scholar
  63. Shusterman, A., Munz, M., Richter, G., et al. (2017). The PF4/PPBP/CXCL5 gene cluster is associated with periodontitis. Journal of Dental Research, 96, 945–952.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Stocks, C. J., Schembri, M. A., Sweet, M. J., & Kapetanovic, R. (2018). For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. Journal of Leukocyte Biology, 103, 35–51.CrossRefGoogle Scholar
  65. Sukhithasri, V., Nisha, N., Biswas, L., Anil Kumar, V., & Biswas, R. (2013). Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiological Research, 168, 396–406.CrossRefGoogle Scholar
  66. Tonetti, M. S., Chapple, I. L., Jepsen, S., & Sanz, M. (2015). Primary and secondary prevention of periodontal and peri-implant diseases introduction to, and objectives of the consensus from the 11 European workshop on periodontology. Journal of Clinical Periodontology, 42(Suppl 16), S1–S4.CrossRefGoogle Scholar
  67. Tsukamoto, Y., Usui, M., Yamamoto, G., et al. (2012). Role of the junctional epithelium in periodontal innate defense and homeostasis. Journal of Periodontal Research, 47, 750–757.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Van der Velden, U. (1984). Effect of age on the periodontium. Journal of Clinical Periodontology, 11, 281–294.CrossRefGoogle Scholar
  69. Wade, W. G. (2013). The oral microbiome in health and disease. Pharmacological Research, 69, 137–143.CrossRefGoogle Scholar
  70. Wael Youssef, E. (2018). Age-dependent differential expression of apoptotic markers in rat oral mucosa. Asian Pacific Journal of Cancer Prevention, 19, 3245–3250.CrossRefGoogle Scholar
  71. Walsh, D., McCarthy, J., O’Driscoll, C., & Melgar, S. (2013). Pattern recognition receptors--molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine & Growth Factor Reviews, 24, 91–104.CrossRefGoogle Scholar
  72. Wu, Y., Dong, G., Xiao, W., et al. (2016). Effect of aging on periodontal inflammation, microbial colonization, and disease susceptibility. Journal of Dental Research, 95, 460–466.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Xia, Y., Sun, M., Xie, Y., & Shu, R. (2017). mTOR inhibition rejuvenates the aging gingival fibroblasts through alleviating oxidative stress. Oxidative Medicine and Cellular Longevity, 2017, 6292630.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yeo, L., Adlard, N., Biehl, M., et al. (2016). Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis. Annals of the Rheumatic Diseases, 75, 763–771.CrossRefGoogle Scholar
  75. Yu, L. C., Wang, J. T., Wei, S. C., & Ni, Y. H. (2012). Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World Journal of Gastrointestinal Pathophysiology, 3, 27–43.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang, J., Wang, C. M., Zhang, P., et al. (2016). Expression of programmed death 1 ligand 1 on periodontal tissue cells as a possible protective feedback mechanism against periodontal tissue destruction. Molecular Medicine Reports, 13, 2423–2430.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. L. Ebersole
    • 1
    Email author
  • L. Orraca
    • 4
  • M. J. Novak
    • 2
    • 3
  • S. Kirakodu
    • 2
    • 3
  • J. Gonzalez-Martinez
    • 5
  • O. A. Gonzalez
    • 2
    • 6
  1. 1.Department of Biomedical SciencesSchool of Dental Medicine, University of Nevada Las VegasLas VegasUSA
  2. 2.Center for Oral Health Research, College of Dentistry, University of KentuckyLexingtonUSA
  3. 3.Division of PeriodontologyUniversity College of Dentistry, University of KentuckyLexingtonUSA
  4. 4.School of Dental Medicine, University of Puerto RicoSan JuanPuerto Rico
  5. 5.Caribbean Primate Research Center, College of Dentistry, University of KentuckyLexingtonUSA
  6. 6.Division of PeriodontologyCollege of Dentistry, University of KentuckyLexingtonUSA

Personalised recommendations