Application of Virtual Reality in the Training of Operators and Servicing of Robotic Stations

  • Magdalena MuszyńskaEmail author
  • Dariusz Szybicki
  • Piotr Gierlak
  • Krzysztof Kurc
  • Andrzej Burghardt
  • Marek Uliasz
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 568)


The article discusses the subject of the use of virtual reality in training the service and maintenance of robots and robotic stations. The developed trainings use virtual reality, thus they are interactive and allow advanced operations without the risk of damaging expensive equipment. The idea of the training program and the application of virtual reality was based on the collaborative network defined in the article. The individual chapters discuss the idea of virtual reality, tools used to develop the training system and examples of activities carried out. Real tools used to obtain virtual reality are shown. Methods of developing interactive elements necessary in simulations are presented.


Virtual reality Robotic stations Operator training Robot service 


  1. 1.
    Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16(4–5), 439–452 (2005)CrossRefGoogle Scholar
  2. 2.
    Shuman, J., Twombly, J.: Collaborative networks are the organization: an innovation in organization design and management. Vikalpa 35(1), 1–14 (2010)CrossRefGoogle Scholar
  3. 3.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Szczęch, T.: Robot-operated inspection of aircraft engine turbine rotor guide vane segment geometry. Tehnički vjesnik 24(Suppl. 2), 345–348 (2017)Google Scholar
  4. 4.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Nawrocki, J.: Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnički vjesnik 24(Suppl. 2), 349–353 (2017)Google Scholar
  5. 5.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Nawrocki, J.: Robot-operated quality control station based on the UTT method. Open Eng. 7(1), 37–42 (2017)CrossRefGoogle Scholar
  6. 6.
    Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. 59(2), 717–739 (2010)CrossRefGoogle Scholar
  7. 7.
    Gierlak, P.: Hybrid position/force control in robotised machining. In: Solid State Phenomena, Switzerland, vol. 210, pp. 192–199 (2014)CrossRefGoogle Scholar
  8. 8.
    Burghardt, A., Kurc, K., Szybicki, D., Muszyńska, M., Szczęch, T.: Monitoring the parameters of the robot-operated quality control process. Adv. Sci. Technol.-Res. J. 11(1), 232–236 (2017)CrossRefGoogle Scholar
  9. 9.
    Burghardt, A., Szybicki, D., Kurc, K., Muszyńska, M., Mucha, J.: Experimental study of Inconel 718 surface treatment by edge robotic deburring with force control. Strength Mater. 49(4), 594–604 (2017)CrossRefGoogle Scholar
  10. 10.
    Barnfather, J.D., Goodfellow, M.J., Abram, T.: A performance evaluation methodology for robotic machine tools used in large volume manufacturing. Robot. CIM-Int. Manuf. 37, 49–56 (2016)CrossRefGoogle Scholar
  11. 11.
    Kurc, K., Burghardt, A., Gierlak, P., Szybicki, D.: Non-contact robotic measurement of jet engine components with 3D optical scanner and UTT method. In: Hanus, R., Kreischer, C., Mazur, D. (eds.) MSM 2018. LNEE, vol. 548, pp. 151–164. Springer, Cham (2019). Scholar
  12. 12.
    Hui-Ping, L., Dai-Min, C., Miao, Y.: Communication of multi-robot system on the TCP/IP In: International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pp. 1432–1435. IEEE (2011)Google Scholar
  13. 13.
    Szybicki, D., Burghardt, A., Gierlak, P., Kurc, K.: Robot-assisted quality inspection of turbojet engine blades. In: Hanus, R., Kreischer, C., Mazur, D. (eds.) MSM 2018. LNEE, vol. 548, pp. 337–350. Springer, Cham (2019). Scholar
  14. 14.
    Szybicki, D., Burghardt, A., Kurc, K., Pietruś, P.: Calibration and verification of an original module measuring turbojet engine blades geometric parameters. Arch. Mech. Eng. 66, 97–109 (2019)Google Scholar
  15. 15.
    Burdea, G.C., Coiffet, P.: Virtual Reality Technology. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  16. 16.
    Shao, F., Robotham, A.J., Hon, K.K.: Development of a 1: 1 scale true perception virtual reality system for design review in automotive industry (2019)Google Scholar
  17. 17.
    Gallagher, A.G., et al.: Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann. Surg. 241(2), 364 (2005)CrossRefGoogle Scholar
  18. 18.
    Koźlak, M., Kurzeja, A., Nawrat, A.: Virtual reality technology for military and industry training programs. In: Nawrat, A., Kuś, Z. (eds.) Vision Based Systems for UAV Applications. Studies in Computational Intelligence, vol. 481, pp. 327–334. Springer, Heidelberg (2013). Scholar
  19. 19.
    Matsas, E., Vosniakos, G.C.: Design of a virtual reality training system for human–robot collaboration in manufacturing tasks. Int. J. Interact. Des. Manuf. (IJIDeM) 11(2), 139–153 (2017)CrossRefGoogle Scholar
  20. 20.
    Ortiz, J.S., et al.: Virtual training for industrial automation processes through pneumatic controls. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 516–532. Springer, Cham (2018). Scholar
  21. 21.
    De Pace, F., Manuri, F., Sanna, A., Zappia, D.: An augmented interface to display industrial robot faults. In: De Paolis, L., Bourdot, P. (eds.) Augmented Reality, Virtual Reality, and Computer Graphics. LNCS, pp. 403–421. Springer, Cham (2018). Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Magdalena Muszyńska
    • 1
    Email author
  • Dariusz Szybicki
    • 1
  • Piotr Gierlak
    • 1
  • Krzysztof Kurc
    • 1
  • Andrzej Burghardt
    • 1
  • Marek Uliasz
    • 2
  1. 1.Rzeszow University of TechnologyRzeszowPoland
  2. 2.Pratt & Whitney Rzeszow S.A.RzeszowPoland

Personalised recommendations