Advertisement

Stars

  • Piotr T. Chruściel
Chapter
  • 69 Downloads
Part of the Compact Textbooks in Mathematics book series (CTM)

Abstract

In this chapter we provide an introduction to general relativistic stellar models.

References

  1. 15.
    R. Beig, W. Simon, On the uniqueness of static perfect–fluid solutions in general relativity. Commun. Math. Phys. 144, 373–390 (1992)MathSciNetCrossRefGoogle Scholar
  2. 22.
    H.A. Buchdahl, General relativistic fluid spheres. Phys. Rev. 116(2), 1027–1034 (1959)MathSciNetCrossRefGoogle Scholar
  3. 43.
    J.M. Heinzle, Bounds on 2mr for static perfect fluids (2007). arXiv:0708.3352 [gr-qc]Google Scholar
  4. 50.
    J. Jezierski, Thermo-hydrodynamics as a field theory, in Nonequilibrium Theory and Extremum Principles, ed. by S. Sieniutycz, P. Salamon. Advances of Thermodynamics, vol. 3 (Taylor and Francis, New York, 1990), pp. 282–317Google Scholar
  5. 51.
    J. Jezierski, J. Kijowski, Une description hamiltonienne du frottement et de la viscosité. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 301, 221–224 (1985)MathSciNetGoogle Scholar
  6. 52.
    P. Karageorgis, J.G. Stalker, Sharp bounds on 2mr for static spherical objects. Classical Quantum Gravity 25, 195021, 14 pp. (2008). arXiv:0707.3632 [gr-qc]. https://doi.org/10.1088/0264-9381/25/19/195021
  7. 53.
    J. Kijowski, A. Smólski, A. Górnicka, Hamiltonian theory of self-gravitating perfect fluid and a method of effective deparametrization of Einstein’s theory of gravitation. Phys. Rev. D 41(3), 1875–1884 (1990).  https://doi.org/10.1103/PhysRevD.41.1875MathSciNetCrossRefGoogle Scholar
  8. 54.
    R. Kippenhahn, A. Weigert, Stellar Structure and Evolution (Springer, New York, 1994)zbMATHGoogle Scholar
  9. 60.
    A.K.M. Masood-ul Alam, Proof that static stellar models are spherical. Gen. Relativ. Gravit. 39, 55–85 (2007). https://doi.org/10.1007/s10714-006-0364-4MathSciNetCrossRefGoogle Scholar
  10. 79.
    S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr T. Chruściel
    • 1
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations