Weak Fields and Gravitational Waves

  • Piotr T. Chruściel
Part of the Compact Textbooks in Mathematics book series (CTM)


The aim of this chapter is to present some essential ingredients of the proof of the Einstein quadrupole formula for the rate of loss of energy by a gravitating system into gravitational waves. On the way towards this we will also verify that Einstein equations reduce to Newton’s in an appropriate limit.


  1. 1.
    B.P. Abbott et al., GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016). arXiv:1606.04855 [gr-qc].
  2. 2.
    B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837 [gr-qc].
  3. 3.
    B.P. Abbott et al., First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Phys. Rev. D96(12), 122004 (2017). arXiv:1707.02669 [gr-qc].
  4. 4.
    B.P. Abbott et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848, L13 (2017). arXiv:1710.05834 [astro-ph.HE].
  5. 5.
    B.P. Abbott et al., GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017). arXiv:1706.01812 [gr-qc].
  6. 6.
    B.P. Abbott et al., Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017). arXiv:1710.05833 [astro-ph.HE].
  7. 7.
    B.P. Abbott et al., GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs (2018). arXiv:1811.12907 [astro-ph.HE]Google Scholar
  8. 8.
    B.P. Abbott et al., Searches for continuous gravitational waves from fifteen Supernova remnants and Fomalhaut b with Advanced LIGO (2018). arXiv:1812.11656 [astro-ph.HE]Google Scholar
  9. 9.
    A. Albert et al., Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. 850, L35 (2017). Scholar
  10. 10.
    L. Andersson, R. Beig, B.G. Schmidt, Rotating elastic bodies in Einstein gravity. Commun. Pure Appl. Math. 63, 559–589 (2010). Scholar
  11. 11.
    N. Andersson et al., The transient gravitational-wave sky. Classical Quantum Gravity 30, 193002 (2013). arXiv:1305.0816 [gr-qc].
  12. 12.
    H. Andréasson, M. Kunze, G. Rein, Rotating, stationary, axially symmetric spacetimes with collisionless matter. Commun. Math. Phys. 329, 787–808 (2012). arXiv:1212.5028 [gr-qc].
  13. 13.
    J. Antoniadis et al., A massive pulsar in a compact relativistic binary. Science 340, 6131 (2013). arXiv:1304.6875 [astro-ph.HE].
  14. 14.
    R. Beig, W. Simon, Proof of a multipole conjecture due to Geroch. Commun. Math. Phys. 78, 75–82 (1980)MathSciNetCrossRefGoogle Scholar
  15. 19.
    I. Białynicki-Birula, Z. Białynicka-Birula, Gravitational waves carrying orbital angular momentum. New J. Phys. 18, 023022 (2016). arXiv:1511.08909 [gr-qc].
  16. 23.
    A. Buonanno, Gravitational waves, in Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, 31 July–25 August 2006 (2007). arXiv:0709.4682 [gr-qc]Google Scholar
  17. 26.
    J. Creswell, S. von Hausegger, A.D. Jackson, H. Liu, P. Naselsky, On the time lags of the LIGO signals. J. Cosmol. Astropart. Phys. 1708, 013 (2017). Scholar
  18. 29.
    F. Dyson, Interstellar Communication, Chap. 12 (A.G. Cameron, New York, 1963)Google Scholar
  19. 30.
    J. Ehlers, Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie. Fundamental Problems of Modern Physics (Bibliographisches Inst., Mannheim, 1981), pp. 65–84Google Scholar
  20. 42.
    U. Heilig, On the existence of rotating stars in general relativity. Commun. Math. Phys. 166, 457–493 (1995)MathSciNetCrossRefGoogle Scholar
  21. 55.
    M. Kramer, Probing gravitation with pulsars. IAU Symp. 291, 19–26 (2013). arXiv:1211.2457 [astro-ph.HE].
  22. 62.
    T.A. Oliynyk, Post-Newtonian expansions for perfect fluids. Commun. Math. Phys. 288, 847–886 (2009). Scholar
  23. 63.
    T.A. Oliynyk, A rigorous formulation of the cosmological Newtonian limit without averaging. J. Hyperbolic Differ. Equ. 7, 405–431 (2010). Scholar
  24. 72.
    A.D. Rendall, The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system. Commun. Math. Phys. 163, 89–112 (1994). Scholar
  25. 85.
    M.E. Taylor, Partial Differential Equations III. Nonlinear Equations. Applied Mathematical Sciences, vol. 117, 2nd edn. (Springer, New York, 2011)Google Scholar
  26. 86.
    K.S. Thorne, Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299–339 (1980). Scholar
  27. 87.
    J.M. Weisberg, Y. Huang, Relativistic measurements from timing the binary pulsar PSR B1913+16. Astrophys. J. 829, 55 (2016). arXiv:1606.02744 [astro-ph.HE].
  28. 90.
    S. Yang, On the geodesic hypothesis in general relativity. Commun. Math. Phys. 325, 997–1062 (2014). arXiv:1209.3985 [math.AP].

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr T. Chruściel
    • 1
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations