Advertisement

The Schwarzschild Metric

  • Piotr T. Chruściel
Chapter
  • 109 Downloads
Part of the Compact Textbooks in Mathematics book series (CTM)

Abstract

A basic black-hole solution of the Einstein equations is the Schwarzschild metric. The aim of this chapter is to introduce the reader to its geometry.

References

  1. 16.
    A.L. Besse, Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 10 (Springer, Berlin/New York/Heidelberg, 1987)Google Scholar
  2. 18.
    G. Beyerle, Visualization of Thomas-Wigner rotations. Symmetry 9, 292 (2017). arXiv:1706.02755 [physics.class-ph].  https://doi.org/10.3390/sym9120292
  3. 20.
    G.D. Birkhoff, Relativity and Modern Physics (Harvard University Press, Harvard, 1923)zbMATHGoogle Scholar
  4. 24.
    T.E. Collett et al., A precise extragalactic test of general relativity. Science 360, 1342–1346 (2018).CrossRefGoogle Scholar
  5. 27.
    P. Delva et al., Gravitational redshift test using eccentric Galileo satellites. Phys. Rev. Lett. 121, 231101, 6 pp. (2018). arXiv:1812.03711 [gr-qc].  https://doi.org/10.1103/PhysRevLett.121.231101
  6. 28.
    P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Shapiro delay measurement of a two solar mass neutron star. Nature 467, 1081–1083 (2010). arXiv:1010.5788 [astro-ph.HE].  https://doi.org/10.1038/nature09466
  7. 33.
    Event Horizon Telescope Collaboration, First M87 Event Horizon Telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875, L6, 44 pp. (2019). https://doi.org/10.3847/2041-8213/ab1141. https://ui.adsabs.harvard.edu/abs/2019ApJ...875L...6E
  8. 34.
    C.W.F. Everitt et al., Gravity Probe B data analysis status and potential for improved accuracy of scientific results. Classical Quantum Gravity 25, 114002 (2008). https://doi.org/10.1088/0264-9381/25/11/114002CrossRefGoogle Scholar
  9. 35.
    C.W.F. Everitt et al., Gravity Probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011). arXiv:1105.3456 [gr-qc].  https://doi.org/10.1103/PhysRevLett.106.221101
  10. 36.
    C. Fronsdal, Completion and embedding of the Schwarzschild solution. Phys. Rev. 116, 778–781 (1959)MathSciNetCrossRefGoogle Scholar
  11. 38.
    F. Giannoni, A. Masiello, P. Piccione, A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. Commun. Math. Phys. 187, 375–415 (1997)MathSciNetCrossRefGoogle Scholar
  12. 39.
    J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: observed relativistic time gains. Science 177, 168–170 (1972). http://www.jstor.org/stable/1734834CrossRefGoogle Scholar
  13. 40.
    J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: predicted relativistic time gains. Science 177, 166–168 (1972). http://www.jstor.org/stable/1734833CrossRefGoogle Scholar
  14. 44.
    S. Herrmann et al., Test of the gravitational redshift with Galileo satellites in an eccentric orbit. Phys. Rev. Lett. 121, 231102 (2018). arXiv:1812.09161 [gr-qc].  https://doi.org/10.1103/PhysRevLett.121.231102
  15. 47.
    Hubble Legacy Archive, http://hla.stsci.edu/
  16. 49.
    J.T. Jebsen, On the general spherically symmetric solutions of Einstein’s gravitational equations in vacuo. Gen. Relativ. Gravit. 37, 2253–2259 (2005). Translation of Ark. Mat. Ast. Fys. (Stockholm) 15, nr.18 (1921). https://doi.org/10.1007/s10714-005-0168-y
  17. 56.
    M.D. Kruskal, Maximal extension of Schwarzschild metric. Phys. Rev. 119, 1743–1745 (1960)MathSciNetCrossRefGoogle Scholar
  18. 61.
    J.-P. Nicolas, Dirac fields on asymptotically flat space-times. Dissertationes Math. (Rozprawy Mat.) 408, 1–85 (2002)MathSciNetCrossRefGoogle Scholar
  19. 65.
    V. Perlick, On Fermat’s principle in general relativity: I. The general case Classical Quantum Gravity 7, 1319–1331 (1990)MathSciNetCrossRefGoogle Scholar
  20. 71.
    R.D. Reasenberg et al., Viking relativity experiment - verification of signal retardation by solar gravity. Astrophys. J. Lett. 234, L219–L221 (1979)CrossRefGoogle Scholar
  21. 76.
    J. Sbierski, The C0-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian Geometry. J. Differ. Geom. 108, 319–378 (2018). arXiv:1507.00601 [gr-qc].  https://doi.org/10.4310/jdg/1518490820
  22. 77.
    P. Schneider, J. Ehlers, E.E. Falco, Gravitational Lenses (Springer, New York, 1993)Google Scholar
  23. 78.
    I.I. Shapiro et al., Fourth test of general relativity: new radar result. Phys. Rev. Lett. 26, 1132–1135 (1971).  https://doi.org/10.1103/PhysRevLett.26.1132CrossRefGoogle Scholar
  24. 83.
    J.L. Synge, The escape of photons from gravitationally intense stars. Mon. Not. R. Astron. Soc. 131, 463–466 (1966)CrossRefGoogle Scholar
  25. 84.
    G. Szekeres, On the singularities of a Riemannian manifold. Gen. Relativ. Gravit. 34, 2001–2016 (2002). Reprinted from Publ. Math. Debrecen 7, 285–301 (1960). https://doi.org/10.1023/A:1020744914721MathSciNetCrossRefGoogle Scholar
  26. 89.
    N.M.J. Woodhouse, General Relativity. Springer Undergraduate Mathematics Series (Springer, London, 2007)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Piotr T. Chruściel
    • 1
  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations