Error Performance Analysis of RF Subcarrier Adjusted FSO Communication Framework over Robust Environmental Disturbance

  • Bobby BaruaEmail author
  • Satya Prasad Majumder
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 33)


RF subcarrier tweak in FSO correspondence framework end up well known step by step because of the enhancement in the framework execution, which are for the most part affected by the robust environmental disturbance due to turbulence. In this paper, we infer error execution limits for RF subcarrier adjusted FSO correspondence frameworks with synchronous RF demodulator working over solid environmental disturbance channel which is demonstrated by gamma-gamma. Execution results are assessed as far as normal CNR, BER and penalty of power endured by the framework because of turbulence impacts.


Amplitude shift keying (ASK) modulation Atmospheric turbulence channel Error performance analysis Free-space optical communication Gamma-gamma model 


  1. 1.
    Sadiku, M.N.O., Musa, S.M.: Free space optical communications: an overview. Eur. Sci. J. 12(9), 55–68 (2016)Google Scholar
  2. 2.
    Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)CrossRefGoogle Scholar
  3. 3.
    Hranilovic, S.: Wireless Optical Communication Systems. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Samimi, H., Azmi, P.: Performance analysis of adaptive subcarrier intensity-modulated free-space optical systems. IET Optoelectron. 5, 168–174 (2011)CrossRefGoogle Scholar
  5. 5.
    Tang, X., Rajbhandari, S., Popoola, W.O., Ghassemlooy, Z., Leitgeb, E., Muhammad, S.S., Kandus, G.: Performance of BPSK subcarrier ıntensity modulation free-space optical communications using a lognormal atmospheric turbulence model. In: IEEE Conference, pp. 17–20 (2010)Google Scholar
  6. 6.
    Popoola, W.O., Ghassemlooy, Z.: BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. J. Lightwave Technol. 27, 967–973 (2009)CrossRefGoogle Scholar
  7. 7.
    Popoola, W.O., Ghassemlooy, Z., Allen, J.I.H., Leitgeb, E., Gao, S.: Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel. Optoelectron. IET 2, 16–23 (2008)CrossRefGoogle Scholar
  8. 8.
    Henniger, H., Wilfert, O.: An introduction to free-space optical communications. J. Radio Eng. 19(2), 16–23 (2010)Google Scholar
  9. 9.
    Andrews, L.C., Phillips, R.L., Hopen, C.Y.: Laser Beam Scintillation with Applications. SPIE Press (2001)Google Scholar
  10. 10.
    Andrews, L.C., Phillips, R.L., Hopen, C.Y., Al-Habash, M.A.: Theory of optical scintillation. J. Opt. Soc. Am. A 16(6), 1417–1429 (1999)CrossRefGoogle Scholar
  11. 11.
    Al-Habash, M.A., Andrews, L.C., Phillips, R.L.: Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 40(8), 1554–1562 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ahsanullah University of Science and TechnologyDhakaBangladesh
  2. 2.Bangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations