Quality Aware Data Aggregation Trees in Sensor Networks

  • Preeti KaleEmail author
  • Manisha J. Nene
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 33)


Wireless Sensor Networks (WSNs) are key enablers for IoT and pervasive computing paradigm. While devices are being seamlessly enabled with connection and communication capabilities, exploring techniques to quantify and improve quality has gathered significance. This work explores quality of a Data Aggregation Tree (DAT) in sensor networks. DATs are building blocks for data collection in WSNs. In this work Quality of Experience (QoE) and Quality of Service (QoS) of DATs is evaluated using data aggregation ratio \(\alpha \) and generated data \(\delta \) respectively. An algorithm Quality Aware Data Aggregation Tree (QADAT) to construct a quality aware DAT is proposed. QADAT adapts the DAT to network and user expectation dynamics. Simulation results show the effectiveness of the proposed algorithm and demonstrates quality awareness through DAT adaptability.


Quality of Service Quality of Experience Data aggregation trees 


  1. 1.
    Al-Kiyumi, R.M., Foh, C.H., Vural, S., Chatzimisios, P., Tafazolli, R.: Fuzzy logic-based routing algorithm for lifetime enhancement in heterogeneous wireless sensor networks. IEEE Trans. Green Commun. Network. 2(2), 517–532 (2018). Scholar
  2. 2.
    Al-Turjman, F.M.: Information-centric sensor networks for cognitive IoT: an overview. Ann. Telecommun. 72(1–2), 3–18 (2017)CrossRefGoogle Scholar
  3. 3.
    Bisdikian, C., Kaplan, L.M., Srivastava, M.B.: On the quality and value of information in sensor networks. ACM Trans. Sens. Netw. (TOSN) 9(4), 48 (2013)Google Scholar
  4. 4.
    Buragohain, C., Agrawal, D., Suri, S.: Power aware routing for sensor databases. In: Proceedings of IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM 2005, vol. 3, pp. 1747–1757. IEEE (2005)Google Scholar
  5. 5.
    Cristescu, R., Beferull-Lozano, B., Vetterli, M., Wattenhofer, R.: Network correlated data gathering with explicit communication: NP-completeness and algorithms. IEEE/ACM Trans. Network. 14(1), 41–54 (2006)CrossRefGoogle Scholar
  6. 6.
    Ebling, M.R.: Pervasive computing and the internet of things. IEEE Pervasive Comput. 15(1), 2–4 (2016). Scholar
  7. 7.
    Fasolo, E., Rossi, M., Widmer, J., Zorzi, M.: In-network aggregation techniques for wireless sensor networks: a survey. Wirel. Commun. 14(2), 70–87 (2007)CrossRefGoogle Scholar
  8. 8.
    Hassan, J., Das, S., Hassan, M., Bisdikian, C., Soldani, D.: Improving quality of experience for network services [guest editorial]. IEEE Netw. 24(2), 4–6 (2010)CrossRefGoogle Scholar
  9. 9.
    He, J., Ji, S., Pan, Y., Li, Y.: Constructing load-balanced data aggregation trees in probabilistic wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(7), 1681–1690 (2014). Scholar
  10. 10.
    Kale, P., Nene, M.J.: Path reestablishment in wireless sensor networks. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1659–1663, March 2017.
  11. 11.
    Kilkki, K.: Quality of experience in communications ecosystem. J. UCS 14(5), 615–624 (2008)Google Scholar
  12. 12.
    Krishnamachari, L., Estrin, D., Wicker, S.: The impact of data aggregation in wireless sensor networks. In: 22nd International Conference on Distributed Computing Systems Workshops, 2002 Proceedings, pp. 575–578. IEEE (2002)Google Scholar
  13. 13.
    Kuo, T.W., Lin, K.C.J., Tsai, M.J.: On the construction of data aggregation tree with minimum energy cost in wireless sensor networks: NP-completeness and approximation algorithms. IEEE Trans. Comput. 65(10), 3109–3121 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lin, H.C., Chen, W.Y.: An approximation algorithm for the maximum-lifetime data aggregation tree problem in wireless sensor networks. IEEE Trans. Wirel. Commun. 16(6), 3787–3798 (2017). Scholar
  15. 15.
    Luo, H., Liu, Y., Das, S.K.: Routing correlated data in wireless sensor networks: a survey. IEEE Netw. 21(6), 40–47 (2007)CrossRefGoogle Scholar
  16. 16.
    Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002). Scholar
  17. 17.
    Matsuura, H.: Maximizing lifetime of multiple data aggregation trees in wireless sensor networks. In: 2016 IEEE/IFIP Network Operations and Management Symposium (NOMS), pp. 605–611. IEEE (2016)Google Scholar
  18. 18.
    Nguyen, N.T., Liu, B.H., Pham, V.T., Luo, Y.S.: On maximizing the lifetime for data aggregation in wireless sensor networks using virtual data aggregation trees. Comput. Netw. 105(C), 99–110 (2016). Scholar
  19. 19.
    Rajagopalan, R., Varshney, P.K.: Data aggregation techniques in sensor networks: a survey (2006)CrossRefGoogle Scholar
  20. 20.
    Shaikh, F.K., Zeadally, S., Exposito, E.: Enabling technologies for green internet of things. IEEE Syst. J. 11(2), 983–994 (2017)CrossRefGoogle Scholar
  21. 21.
    Shan, M., Chen, G., Luo, D., Zhu, X., Wu, X.: Building maximum lifetime shortest path data aggregation trees in wireless sensor networks. ACM Trans. Sens. Netw. (TOSN) 11(1), 11 (2014)Google Scholar
  22. 22.
    Tan, H.Ö., Körpeovglu, I.: Power efficient data gathering and aggregation in wireless sensor networks. ACM Sigmod Rec. 32(4), 66–71 (2003)CrossRefGoogle Scholar
  23. 23.
    Wu, Y., Mao, Z., Fahmy, S., Shroff, N.B.: Constructing maximum-lifetime data-gathering forests in sensor networks. IEEE/ACM Trans. Network. 18(5), 1571–1584 (2010)CrossRefGoogle Scholar
  24. 24.
    Zhu, C., Leung, V.C.M., Shu, L., Ngai, E.C.H.: Green internet of things for smart world. IEEE Access 3, 2151–2162 (2015). Scholar
  25. 25.
    Zhu, Y., Sundaresan, K., Sivakumar, R.: Practical limits on achievable energy improvements and useable delay tolerance in correlation aware data gathering in wireless sensor networks. In: 2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON 2005, pp. 328–339. IEEE (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Defence Institute of Advanced TechnologyPuneIndia

Personalised recommendations