An Approach for Generating SQL Query Using Natural Language Processing

  • Priyanka MoreEmail author
  • Bharti KudaleEmail author
  • Pranali DeshmukhEmail author
  • Indira N. BiswasEmail author
  • Neha J. MoreEmail author
  • Francisco S. GomesEmail author
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 33)


Today’s databases of corporations are so huge, that they can only be approached by experienced programmers. Accessing data from a database usually needs notable skills such as knowledge of SQL; however, the most of us who interact with databases every day don’t have that background. Hence it’s an increase demand for non-technical user to be able to redeem data from databases without having to list SQL queries. And this problem is solved by using approach of Natural Language Processing. This research work presents an approach for querying system for natural language processing. Hence it will dramatically simplify the process of handling with large data and making data available for everyone.


Natural Language Processing Tokenization Tagging Relational database Semantic analysis SQL query 


  1. 1.
    Woods, W., Kaplan, R., Webber, B.: The Lunar science natural language information system (1972)Google Scholar
  2. 2.
    Liu, J., Li, W., Lu, L., Zhou, J., Han, X., Shi, J.: Linked open data query based on natural language. Chin. J. Electron. 26, 230–235 (2017)CrossRefGoogle Scholar
  3. 3.
    Seha, R.J.H.: Philips question answering system PHILIQAI (1977)Google Scholar
  4. 4.
    Enikuomehin, A.O., Okwufulueze, D.O.: An algorithm for solving natural language query execution problems on relational databases. Int. J. Adv. Comput. Sci. Appl. 3, 169–175 (2012)Google Scholar
  5. 5.
    Agrawal, R., Chakkarwar, A., Choudhary, P., Jogalekar, U.A., Kulkarni, D.H.: DBIQS – an intelligent system for querying and mining databases using NLP (2014)Google Scholar
  6. 6.
    More, P., Phalnikar, R.: Generating UML diagrams from natural language specifications. IJAIS 1(8), 19–23 (2012)CrossRefGoogle Scholar
  7. 7.
    Yorozu, Y., Hirano, M., Oka, K., Tagawa, Y.: Electron spectroscopy studies on magneto-optical media and plastic substrate interface. IEEE Transl. J. Magn. Jpn. 2, 740–741 (1987). Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982CrossRefGoogle Scholar
  8. 8.
    Androutsopoulos, I., Richie, G.D., Thanisch, P.: Natural language interface to databases – an introduction. J. Nat. Lang. Eng. 1(1), 29–81 (1995)CrossRefGoogle Scholar
  9. 9.
    Küçüktunç, O., Gudukbay, U., Ulusoy, O.: A natural language-based interface for querying a video database. IEEE Multimed. 14, 83–89 (2007)CrossRefGoogle Scholar
  10. 10.
    Mahmud, T., Azharul Hasan, K.M., Ahmed, M., Chak, T.H.C.: A rule-based approach for NLP based query processing. IEEE (2015)Google Scholar
  11. 11.
    Fulford, K., Olmsted, A.: Mobile natural language database interface for accessing relational data. IEEE (2017)Google Scholar
  12. 12.
    Gupta, P., Goswami, A.: IQS-Intelligent Querying System using natural language processing. IEEE (2017)Google Scholar
  13. 13.
    Chandhana Surabhi, M.: Natural language processing future. IEEE (2013)Google Scholar
  14. 14.
    Nicole, R.: Database System Concepts, 4th edn.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Information TechnologyGenba Sopanrao Moze CoEPuneIndia
  2. 2.Computer EngineeringGenba Sopanrao Moze CoEPuneIndia

Personalised recommendations