Advertisement

Snow Avalanches

  • Genady P. CherepanovEmail author
Chapter

Abstract

In this chapter, the snowpack compressed by the gravity of snow is modeled as a multilayer sandwich on a slope with several parallel planes of transverse slippage. The invariant integral of snowpack describes the critical state at the head of this structure when the avalanche starts on moving. This critical state is characterized in terms of physical and geometrical parameters of snow and slope. The solution of the avalanche motion equation was used to simulate the motion of the famous avalanche that happened on February 7, 2003, in Vallee de la Sionne in Switzerland. Also, the progressive failure of skyscrapers is studied and compared with the similar mechanics of avalanches. As applied to the WTC collapse on September 11, 2001, it is shown that its progressive failure would have taken more than 15 cek while, in fact, it took about 12 s which is characteristic for the free-fall demolition. This chapter is for those who are interested in the analysis of progressive failure leading to disasters and catastrophes.

Literature

  1. 1.
    G.P. Cherepanov, Mechanics of the WTC collapse. J. Fract. 141, 287–290 (2006)CrossRefGoogle Scholar
  2. 2.
    G.P. Cherepanov, I.E. Esparragoza, A fracture-entrainment model for snow avalanches. J. Glaciol. 54(184), 182–189 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    G.P. Cherepanov, Fracture waves revisited. J. Fract. 159, 81–85 (2009)CrossRefGoogle Scholar
  4. 4.
    G.P. Cherepanov, I.E. Esparragoza, A hybrid model of WTC collapse. J. Appl. Mech. Engng. 12(3), 575–585 (2008)Google Scholar
  5. 5.
    G.P. Cherepanov, I.E. Esparragoza, Progressive collapse of towers: the resistance effect. J. Fract. 143, 203–207 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Gauer, D. Issler, Possible erosion mechanism in snow avalanches. Ann. Glaciol. 38(2004), 384–392 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    D. Issler, Modelling of snow entrainment and deposition in power-snow avalanches. Ann. Glaciol. 26, 253–258 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    B. Sovilla, P. Burlando, P. Bartelt, Field experiments and numerical modeling of mass entrainment in snow avalanches. J. Geophys. Res. 111(FO3007), 1–16 (2006)Google Scholar
  9. 9.
    M.E. Eglit, K.S. Demidov, Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43, 10–23 (2005)CrossRefGoogle Scholar
  10. 10.
    B. Sovilla, S. Margreth, P. Bartelt, On snow entrainment in avalanche dynamics calculations. Cold Reg. Sci. Technol. 47(1-2), 69–79 (2007)CrossRefGoogle Scholar
  11. 11.
    P. Bartelt, B. Salm, U. Gruber, Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J. Glaciol. 45(150), 242–254 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    G.P. Cherepanov, Mechanics of Brittle Fracture (Mc-Graw-Hill, New York, 1979), p. 940Google Scholar
  13. 13.
    G.P. Cherepanov, Fracture Mechanics of Composites (Nauka, Moscow, 1983), p. 300Google Scholar
  14. 14.
    G. P. Cherepanov, Fracture Mechanics (Moscow-Izhevsk, ICS, 2012), pp. 1–840Google Scholar
  15. 15.
    K. Platzer, P. Bartelt, M.A. Kern, Measurements of dense snow avalanche basal shear to normal stress ratios. Geophys. Res. Lett. 34(7), L07501 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    P. Bartelt, V. Stockli, The influence of tree and branch fracture, overturning and debris on snow avalanche flow. Ann. Glaciol. 32, 209–216 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    P. Bartelt, O. Buser, K. Platzer, Starving avalanches: frictional mechanisms at the tails of finite-sized mass movements. Geophys. Res. Lett. 34, L20407 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    B. Salm, A. Burkard, H. Gubler, Berechnung von Fliesslawinen, eine Anleitung für Praktiker mit Beispielen, Mitteilungen des Eidgenössischen Institutes für Schnee und Lawinenforschung, No. 47 (Davos, Switzerland, 1990)Google Scholar
  19. 19.
    A. Voellmy, Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung. Jahrg. 73, Heft 12 (159–162), 15(212–217), 17 (246–249), 19 (280–285) (1955)Google Scholar
  20. 20.
    F. Tiefenbacher, M.A. Kern, Experimental devices to determine snow avalanche basal friction and velocity profiles. Cold Reg. Sci. Technol. 38, 17–30 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.MiamiUSA

Personalised recommendations