Advertisement

Principles of Ultrasound Guidance

  • Elaine Situ-LaCasseEmail author
  • Josie Acuña
Chapter

Abstract

This chapter gives an overview of basic ultrasound principles, ultrasound equipment, machine settings, and the overall approach to ultrasound-guided procedures. It reviews just enough basic physics for the provider interested in point-of-care ultrasound to know how to incorporate it into their daily practice. There is also an overview of the ultrasound machine’s functions, presets, and knobs along with the frequencies and clinical uses of each commonly used transducer.

The chapter also delineates the steps and general approach to an ultrasound-guided procedure. The example used is vascular access, but once the provider learns how to visualize a needle under ultrasound, they can use ultrasound to guide any procedure. It also explains short-axis, long-axis, and oblique approaches. There are descriptions of select software settings and ultrasound artifacts which improve needle visibility.

Keywords

Procedures Ultrasound-guided procedures Point-of-care ultrasound Bedside ultrasound Ultrasound physics 

References

  1. 1.
    Brass P, Hellmich M, Kolodziej L, Schick G, Smith AF. Ultrasound guidance versus anatomical landmarks for internal jugular vein catheterization. Cochrane Database Syst Rev. 2015;(1):CD006962.Google Scholar
  2. 2.
    Feller-Kopman D. Ultrasound-guided central venous catheter placement: the new standard of care? Crit Care Med. 2005;33:1875–7.CrossRefGoogle Scholar
  3. 3.
    Bodor M, Fullerton B. Ultrasonography of the hand, wrist, and elbow. Phys Med Rehabil Clin N Am. 2010;21:509–31.CrossRefGoogle Scholar
  4. 4.
    Moy WJ, Su E, Chen JJ, Oh C, Jing JC, Qu Y, He Y, Chen Z, Wong BJF. Association of Electrochemical Therapy with optical, mechanical, and acoustic impedance properties of porcine skin. JAMA Facial Plast Surg. 2017;19:502–9.  https://doi.org/10.1001/jamafacial.2017.0341.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Szabo TL, Lewin PA. Ultrasound transducer selection in clinical imaging practice. J Ultrasound Med. 2017.  https://doi.org/10.1002/jum.14351.CrossRefGoogle Scholar
  6. 6.
    Edelman SK. Ultrasound physics and instrumentation. Woodlands: ESP, Inc.; 2016. Print.Google Scholar
  7. 7.
    Ma OJ, Mateer JR, Reardon RF, Joing SA. Ma and Mateer’s emergency ultrasound. New York: McGraw-Hill Education; 2014. Print.Google Scholar
  8. 8.
    Barnett SB. Intracranial temperature elevation from diagnostic ultrasound. Ultrasound Med Biol. 2001;27:883–8.CrossRefGoogle Scholar
  9. 9.
    Mari J, Hibbs K, Stride E, Eckersley R, Tang M. An approximate nonlinear model for time gain compensation of amplitude modulated images of ultrasound contrast agent perfusion. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57:818–29.CrossRefGoogle Scholar
  10. 10.
    Richards JR, Awrey JM, Medeiros SE, McGahan JP. Color and power Doppler sonography for pneumothorax detection. J Ultrasound Med. 2017;36:2143–7.  https://doi.org/10.1002/jum.14243.CrossRefPubMedGoogle Scholar
  11. 11.
    Coman IM. Christian Andreas Doppler: the man and his legacy. Eur J Echocardiogr. 2005;6:7–10.CrossRefGoogle Scholar
  12. 12.
    Entrekin RR, Porter BA, Sillesen HH, Wong AD, Cooperberg PL, Fix CH. Real-time spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound. Semin Ultrasound CT MR. 2001;22:50–64.CrossRefGoogle Scholar
  13. 13.
    Socransky S, Wiss R. Point-of-care ultrasound for emergency physicians: “The EDE Book”. Canada: The EDE 2 Course Inc; 2013. Print.Google Scholar
  14. 14.
    Dillane D, Tsui BC. From basic concepts to emerging technologies in regional anesthesia. Curr Opin Anaesthesiol. 2010;23:643–9.CrossRefGoogle Scholar
  15. 15.
    Cohnen M, Saleh A, Lüthen R, Bode J, Mödder U. Improvement of sonographic needle visibility in cirrhotic livers during transjugular intrahepatic portosystemic stent-shunt procedures with use of real-time compound imaging. J Vasc Interv Radiol. 2003;14:103–6.CrossRefGoogle Scholar
  16. 16.
    Saleh A, Ernst S, Grust A, Fürst G, Dall P, Mödder U. Real-time compound imaging: improved visibility of puncture needles and localization wires as compared to single-line ultrasonography. Rofo. 2001;173:368–72.CrossRefGoogle Scholar
  17. 17.
    Mesurolle B, Bining HJ, El Khoury M, Barhdadi A, Kao E. Contribution of tissue harmonic imaging and frequency compound imaging in interventional breast sonography. J Ultrasound Med. 2006;25:845–55.CrossRefGoogle Scholar
  18. 18.
    Karstrup S, Brøns J, Morsel L, Juul N, von der Recke P. Optimal set-up for ultrasound guided punctures using new scanner applications: an in-vitro study. Eur J Ultrasound. 2002;15:77–84.CrossRefGoogle Scholar
  19. 19.
    Baker JA, Soo MS, Mengoni P. Sonographically guided percutaneous interventions of the breast using a steerable ultrasound beam. AJR Am J Roentgenol. 1999;172:157–9.CrossRefGoogle Scholar
  20. 20.
    Taylor KJ, Holland S. Doppler US. Part I. Basic principles, instrumentation, and pitfalls. Radiology. 1990;174:297–307.CrossRefGoogle Scholar
  21. 21.
    Chapman GA, Johnson D, Bodenham AR. Visualisation of needle position using ultrasonography. Anaesthesia. 2006;61:148Y158.Google Scholar
  22. 22.
    Chin KJ, Perlas A, Chan VW, Brull R. Needle visualization in ultrasound-guided regional anesthesia: challenges and solutions. Reg Anesth Pain Med. 2008;33:532–44.PubMedGoogle Scholar
  23. 23.
    Hebard S, Hocking G. Echogenic technology can improve needle visibility during ultrasound-guided regional anesthesia. Reg Anesth Pain Med. 2011;36:185–9.CrossRefGoogle Scholar
  24. 24.
    Deam RK, Kluger R, Barrington MJ, McCutcheon CA. Investigation of a new echogenic needle for use with ultrasound peripheral nerve block. Anaesth Intensive Care. 2007;35:582–6.CrossRefGoogle Scholar
  25. 25.
    Miura M, Takeyama K, Suzuki T. Visibility of ultrasound-guided echogenic needle and its potential in clinical delivery of regional anesthesia. Tokai J Exp Clin Med. 2014;39:80–6.PubMedGoogle Scholar
  26. 26.
    Kremkau FW. Diagnostic ultrasound principles and instruments. 5th ed. Philadelphia: Saunders; 1998: 147Y157, 377Y436.Google Scholar
  27. 27.
    Prabhu SJ, Kanal K, Bhargava P, Vaidya S, Dighe MK. Ultrasound artifacts: classification, applied physics with illustrations, and imaging appearances. Ultrasound Q. 2014;30:145–57.CrossRefGoogle Scholar
  28. 28.
    van Geffen GJ, Mulder J, Gielen M, van Egmond J, Scheffer GJ, et al. A needle guidance device compared to free hand technique in an ultrasound guided interventional task using a phantom. Anaesthesia. 2008;63:986–90.CrossRefGoogle Scholar
  29. 29.
    Whittaker S, Lethbridge G, Kim C, Keon Cohen Z, Ng I. An ultrasound needle insertion guide in a porcine phantom model. Anaesthesia. 2013;68:826–9.CrossRefGoogle Scholar
  30. 30.
    Ball RD, Scouras NE, Orebaugh S, Wilde J, Sakai T. Randomized, prospective, observational simulation study comparing residents’ needle guided vs free-hand ultrasound techniques for central venous catheter access. Br J Anaesth. 2012;108:72–9.CrossRefGoogle Scholar
  31. 31.
    Kim C, Ratnayake M, Lethbridge G, Ng I. Comparing the use of a needle guidance device vs. free-hand technique in performing ultrasound-guided TAP blocks: a prospective randomised trial. J Anesth Clin Res. 2014;5:429.CrossRefGoogle Scholar
  32. 32.
    Matalon TA, Silver B. US guidance of interventional procedures. Radiology. 1990;174:43–7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Emergency MedicineBanner University Medical Center-TucsonTucsonUSA

Personalised recommendations