Advertisement

Ultrasound-Guided Vascular Procedures

  • Brian BurkeEmail author
  • Srikar Adhikari
Chapter

Abstract

Guidance for percutaneous vascular procedures at the bedside fits well within the paradigm for point-of-care ultrasound. The safety and efficacy of these procedures are enhanced by the use of dynamic ultrasound guidance. Substantial evidence from the literature supports the use of ultrasound guidance for vascular access and other bedside percutaneous vascular procedures. Multiple published reports have documented the advantages of ultrasound guidance in terms of procedural success and minimizing complications. Modern advances in transducer and image-forming technology allow the real-time acquisition of high-resolution images of regional vascular anatomy. Clear visualization of the access needle entering the target vessel is achievable with appropriate training. A set of learned skills in manipulating the probe and acquiring optimal needle visualization form a standard protocol which can be applied to multiple anatomic sites. In this chapter, we review ultrasound guidance for the injection of pseudoaneurysm, arterial access, midline catheter, and peripherally inserted central catheter (PICC) line placement.

Keywords

Ultrasound Point-of-care ultrasound Ultrasound guidance Pseudoaneurysm Percutaneous Vascular access Arterial access Midline catheter Peripherally inserted central catheter (PICC) 

References

  1. 1.
    Moore CL, Copel J. Point-of-care ultrasonography. N Engl J Med. 2011;364:749–57.CrossRefGoogle Scholar
  2. 2.
    Keenan SP. Use of ultrasound to place central lines. J Crit Care. 2002;17:126–37.CrossRefGoogle Scholar
  3. 3.
    Maecken T, Grau T. Ultrasound imaging in vascular access. Crit Care Med. 2007;35:S178–85.CrossRefGoogle Scholar
  4. 4.
    Leung J, Duffy M, Finckh A. Real-time ultrasonographically-guided internal jugular vein catheterization in the emergency department increases success rates and reduces complications: a randomized, prospective study. Ann Emerg Med. 2006;48:540–7.CrossRefGoogle Scholar
  5. 5.
    Paul-Andrè C, Kendall J. Ultrasound guidance for vascular access. Emerg Med Clin N Am. 2004;22:749–73.CrossRefGoogle Scholar
  6. 6.
    Augoustides J, Horak J, Ochroch A. A randomized controlled clinical trial of real-time needle-guided ultrasound for internal jugular venous cannulation in a large university anesthesia department. J Cardiothorac Vasc Anesth. 2005;19:310–5.CrossRefGoogle Scholar
  7. 7.
    Mallory D, McGee W, Shawker T, Brennen M, Bailey K, Evans R, et al. Ultrasound guidance improves the success rate of internal jugular vein cannulation. A prospective, randomized trial. Chest. 1990;98:157–60.CrossRefGoogle Scholar
  8. 8.
    Lamperti M, Caldiroli D, Cortellazzi P, Vailati D, Pedicelli A, Tosi F, et al. Safety and efficacy of ultrasound assistance during internal jugular vein cannulation in neurosurgical infants. Intensive Care Med. 2008;34:2100–5.CrossRefGoogle Scholar
  9. 9.
    Serafimidis K, Sakorafas G, Konstantoudakis G, Petropoulou K, Giannopoulos G, Danias N, et al. Ultrasound-guided catheterization of the internal jugular vein in oncologic patients; comparison with the classical anatomic landmark technique: a prospective study. Int J Surg. 2009;7:526–8.CrossRefGoogle Scholar
  10. 10.
    Troianos C, Jobes D, Ellison N. Ultrasound-guided cannulation of the internal jugular vein. A prospective, randomized study. Anesth Analg. 1991;72:823–6.CrossRefGoogle Scholar
  11. 11.
    Karakitsos K, Labropoulos N, DeGroot E, Patrianakos AP, Kouraklis G, Poularas J. Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care. 2006;10:R162.CrossRefGoogle Scholar
  12. 12.
    Denys B, Uretsky B, Reddy P. Ultrasound-assisted cannulation of the internal jugular vein: a prospective comparison to the external landmark-guided technique. Circulation. 1993;87:1557–62.CrossRefGoogle Scholar
  13. 13.
    Etemad-Rezai R, Peck DJ. Ultrasound-guided thrombin injection of femoral artery pseudoaneurysms. Can Assoc Radiol J. 2003;54:118–20.PubMedGoogle Scholar
  14. 14.
    Ehieli WL, Bozdogan E, Janas G, Jaffe TA, Miller CM, Bashir MR, Allen BC. Imaging-guided percutaneous thrombin injection for the treatment of iatrogenic femoral artery pseudoaneurysms. Abdom Radiol (NY). 2019;44(3):1120–6.CrossRefGoogle Scholar
  15. 15.
    Kacila M, Vranic H, Hadzimehmedagic A, Sehovic S, Granov N. The frequency of complications of pseudoaneurysms after cardiac interventional diagnostic and therapeutic interventions. Med Arh. 2011;65(2):78–81.PubMedGoogle Scholar
  16. 16.
    Hashemi Fard O. Iatrogenic femoral artery pseudoaneurysm (review of treatment options). ARYA Atheroscler. 2010;6(2):74–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kronzon I. Diagnosis and treatment of iatrogenic femoral artery pseudoaneurysm: a review. J Am Soc Echocardiogr. 1997;10(3):236–45.CrossRefGoogle Scholar
  18. 18.
    Chun E. Ultrasonographic evaluation of complications related to transfemoral arterial procedures. Ultrasonography. 2018;37(2):164–73.CrossRefGoogle Scholar
  19. 19.
    Stone P, Campbell J, AbuRahma A. Femoral pseudoaneurysms after percutaneous access. J Vasc Surg. 2014;60:1359–66.CrossRefGoogle Scholar
  20. 20.
    Bydawell G. Percutaneous thrombin injection for pseudoaneurysm treatment. S Afr J Radiol. 2013;17(1):41–2.CrossRefGoogle Scholar
  21. 21.
    Paulson EK, Sheafor DH, Kliewer MA, Nelson RC, Eisenberg LB, Sebastian MW, et al. Treatment of iatrogenic femoral arterial pseudoaneurysms: comparison of US-guided thrombin injection with compression repair. Radiology. 2000;215:403–8.CrossRefGoogle Scholar
  22. 22.
    Parás-Bravo P, Paz-Zulueta M, Sarabia-Lavin R, et al. Complications of peripherally inserted central venous catheters: a retrospective cohort study. PLoS One. 2016;11(9):e0162479.CrossRefGoogle Scholar
  23. 23.
    Nichols I, Humphrey JP. The efficacy of upper arm placement of peripherally inserted central catheters using bedside ultrasound and microintroducer technique. J Infus Nurs. 2008;31:165–76.CrossRefGoogle Scholar
  24. 24.
    Schweickert WD, Herlitz J, Pohlman AS, Gehlbach BK, Hall JB, Kress JP. A randomized, controlled trial evaluating postinsertion neck ultrasound in peripherally inserted central catheter procedures. Crit Care Med. 2009;37:1217–21.CrossRefGoogle Scholar
  25. 25.
    Gonzalez R, Cassaro S. Percutaneous Central Catheter (PICC) [Updated 2019 Feb 11]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459338/.
  26. 26.
    Stokowski G, Steele D, Wilson D. The use of ultrasound to improve practice and reduce complication rates in PICC insertions. Art Sci Infus Nurs. 2009;32:145–55.CrossRefGoogle Scholar
  27. 27.
    Pratt RJ, Pellowe CM, Wilson JA, et al. epic2: national evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. J Hosp Infect. 2007;65(Suppl 1):S1–64.CrossRefGoogle Scholar
  28. 28.
    Katheria AC, Fleming SE, Kim JH. A randomized controlled trial of ultrasound-guided peripherally inserted central catheters compared with standard radiograph in neonates. J Perinatol. 2013;33:791–4.CrossRefGoogle Scholar
  29. 29.
    Parkinson R, Gandhi M, Harper J, Archibald C. Establishing an ultrasound guided peripherally inserted central catheter (PICC) insertion service. Clin Radiol. 1998;53:33–6.CrossRefGoogle Scholar
  30. 30.
    Sofocleous CT, Schur I, Cooper SG, et al. Sonographically guided placement of peripherally inserted central venous catheters: review of 355 procedures. AJR Am J Roentgenol. 1998;170:1613.CrossRefGoogle Scholar
  31. 31.
    Yokota T, Tokumine J, Lefor AK, Hasegawa A, Yorozu T, Asao T. Ultrasound-guided placement of a midline catheter in a patient with extensive postburn contractures: a case report. Medicine. 2019;98(3):e14208.CrossRefGoogle Scholar
  32. 32.
    Adams DZ, Little A, Vinsant C, Khandelwal S. The midline catheter: a clinical review. J Emerg Med. 2016;51(3):252–8.CrossRefGoogle Scholar
  33. 33.
    Pierre L, Keenaghan M. Arterial lines. [Updated 2018 Dec 13]. In: StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2019. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499989/.
  34. 34.
    Ailon J, Mourad O, Chien V, Saun T, Dev SP. Videos in clinical medicine. Ultrasound-guided insertion of a radial arterial catheter. N Engl J Med. 2014;371(15):e21.CrossRefGoogle Scholar
  35. 35.
    Shiver S, Blaivas M, Lyon M. A prospective comparison of ultrasound-guided and blindly placed radial arterial catheters. Acad Emerg Med. 2006;13:1275–9.CrossRefGoogle Scholar
  36. 36.
    Seto AH, Abu-Fadel MS, Sparling JM, Zacharias SJ, Daly TS, Harrison AT, et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (Femoral Arterial Access With Ultrasound Trial). JACC Cardiovasc Interv. 2010;3:751–8.CrossRefGoogle Scholar
  37. 37.
    Pachikara R, Gallagher P, Watcha M. Evaluation of ultrasound-guided radial artery cannulation in children. Pediatr Crit Care Med. 2009;10:45–8.CrossRefGoogle Scholar
  38. 38.
    Bhattacharjee S, Maitra S, Baidya DK. Comparison between ultrasound guided technique and digital palpation technique for radial artery cannulation in adult patients: an updated meta-analysis of randomized controlled trials. J Clin Anesth. 2018;47:54–9.CrossRefGoogle Scholar
  39. 39.
    Aouad-Maroun M, Raphael CK, Sayyid SK, Farah F, Akl EA. Ultrasound-guided arterial cannulation for paediatrics. Cochrane Database Syst Rev. 2016;(9):CD011364.Google Scholar
  40. 40.
    Miller AG, Bardin AJ. Review of ultrasound-guided radial artery catheter placement. Respir Care. 2016;61(3):383–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of RadiologyNorth Shore University HospitalManhassetUSA
  2. 2.Department of Emergency MedicineUniversity of ArizonaTucsonUSA

Personalised recommendations