The Role of Perivascular Adipose Tissue in Microvascular Function and Coronary Atherosclerosis

  • Alexios S. Antonopoulos
  • Paraskevi Papanikolaou
  • Dimitris Tousoulis


Microvascular function is an independent risk factor for cardiovascular events, but the causes of microvascular dysfunction remain poorly understood. The role of perivascular adipose tissue (PVAT) in the regulation of vascular function is now a well-established concept supported by ample evidence from animal and translational studies. Importantly, contrary to the traditional notion of PVAT as the cause of vascular dysfunction, recent translational studies have demonstrated that there is a bidirectional communication between the vascular wall and PVAT, the latter playing a key role in diverse aspects of microvascular function and vascular disease, from endothelial dysfunction and microvascular angina to atherosclerosis development and plaque rupture. Although the associations between visceral or subcutaneous adipose tissue with cardiovascular disease risk have been largely explored in clinical studies, the role of PVAT in human atherosclerosis has remained elusive, mainly because of the lack of appropriate tools to study it. However, thanks to recent advances in the field of cardiovascular imaging, noninvasive phenotyping of human coronary PVAT is now feasible. Coronary computed tomography angiography and the use of perivascular Fat Attenuation Index has emerged as a valuable noninvasive biomarker to characterize PVAT and to risk stratify patients for cardiovascular disease risk. In this review we provide an overview of the role of PVAT in microvascular function, the findings of the recent clinical studies in the field, and the role of PVAT as a biomarker in cardiovascular disease.


Perivascular fat Adipose tissue Angina Vascular function Atherosclerosis 


  1. 1.
    Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev. 1994;74(4):761–811.PubMedCrossRefGoogle Scholar
  2. 2.
    Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131(2):242–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Bastien M, et al. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56(4):369–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Nazare JA, et al. Usefulness of measuring both body mass index and waist circumference for the estimation of visceral adiposity and related cardiometabolic risk profile (from the INSPIRE ME IAA study). Am J Cardiol. 2015;115(3):307–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Subirana I, et al. Prediction of coronary disease incidence by biomarkers of inflammation, oxidation, and metabolism. Sci Rep. 2018;8(1):3191.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Antonopoulos AS, Tousoulis D. The molecular mechanisms of obesity paradox. Cardiovasc Res. 2017;113(9):1074–86.PubMedCrossRefGoogle Scholar
  7. 7.
    Cirulli ET, et al. Profound perturbation of the metabolome in obesity is associated with health risk. Cell Metab. 2019;29(2):488–500.e2.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Margaritis M, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation. 2013;127(22):2209–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Guzik TJ, et al. Perivascular adipose tissue as a messenger of the brain-vessel axis: role in vascular inflammation and dysfunction. J Physiol Pharmacol. 2007;58(4):591–610.PubMedGoogle Scholar
  10. 10.
    Greenstein AS, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Mahabadi AA, et al. Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: a segment analysis. Atherosclerosis. 2010;211(1):195–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Goeller M, et al. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol. 2018;3(9):858–63.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ohyama K, et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J Am Coll Cardiol. 2018;71(4):414–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Antonopoulos AS, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med. 2017;9(398):eaal2658.PubMedCrossRefGoogle Scholar
  15. 15.
    Oikonomou EK, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet. 2018;392(10151):929–39.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017;595(12):3907–17.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sharma AM. Adipose tissue: a mediator of cardiovascular risk. Int J Obes Relat Metab Disord. 2002;26(Suppl 4):S5–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Marchington JM, Mattacks CA, Pond CM. Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B. 1989;94(2):225–32.PubMedCrossRefGoogle Scholar
  19. 19.
    Iacobellis G, et al. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res. 2003;11(2):304–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Szasz T, Bomfim GF, Webb RC. The influence of perivascular adipose tissue on vascular homeostasis. Vasc Health Risk Manag. 2013;9:105–16.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Siegel-Axel DI, Haring HU. Perivascular adipose tissue: an unique fat compartment relevant for the cardiometabolic syndrome. Rev Endocr Metab Disord. 2016;17(1):51–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology. 2012;58(1):15–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Gil-Ortega M, et al. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab. 2015;26(7):367–75.PubMedCrossRefGoogle Scholar
  24. 24.
    Antonopoulos AS, et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes. 2015;64(6):2207–19.PubMedCrossRefGoogle Scholar
  25. 25.
    Antonopoulos AS, et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-gamma/adiponectin signalling. Circ Res. 2016;118(5):842–55.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Aghamohammadzadeh R, et al. Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target. Br J Pharmacol. 2012;165(3):670–82.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Akoumianakis I, Antoniades C. The interplay between adipose tissue and the cardiovascular system: is fat always bad? Cardiovasc Res. 2017;113(9):999–1008.PubMedCrossRefGoogle Scholar
  28. 28.
    Rajsheker S, et al. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol. 2010;10(2):191–6.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Emilova R, et al. Diabetes converts arterial regulation by perivascular adipose tissue from relaxation into H(2)O(2)-mediated contraction. Physiol Res. 2016;65(5):799–807.PubMedGoogle Scholar
  30. 30.
    Kagota S, et al. Time-dependent differences in the influence of perivascular adipose tissue on vasomotor functions in metabolic syndrome. Metab Syndr Relat Disord. 2017;15(5):233–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Antonopoulos AS, Antoniades C. Perivascular fat attenuation index by computed tomography as a metric of coronary inflammation. J Am Coll Cardiol. 2018;71(23):2708–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Antonopoulos AS, Antoniades C, Tousoulis D. Unravelling the “adipokine paradox”: when the classic proatherogenic adipokine leptin is deemed the beneficial one. Int J Cardiol. 2015;197:125–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Antonopoulos AS, et al. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 2014;34(9):2151–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee S, et al. Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2011;301(2):H306–14.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Antonopoulos AS, et al. Novel therapeutic strategies targeting vascular redox in human atherosclerosis. Recent Pat Cardiovasc Drug Discov. 2009;4(2):76–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Axelsson J, et al. Adipose tissue and its relation to inflammation: the role of adipokines. J Ren Nutr. 2005;15(1):131–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Lau DC, et al. Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol. 2005;288(5):H2031–41.PubMedCrossRefGoogle Scholar
  38. 38.
    Zavaritskaya O, et al. Role of KCNQ channels in skeletal muscle arteries and periadventitial vascular dysfunction. Hypertension. 2013;61(1):151–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Kohn C, et al. Hydrogen sulfide: potent regulator of vascular tone and stimulator of angiogenesis. Int J Biomed Sci. 2012;8(2):81–6.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ardanaz N, Pagano PJ. Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med (Maywood). 2006;231(3):237–51.CrossRefGoogle Scholar
  41. 41.
    Xu X, et al. Molecular mechanisms of ghrelin-mediated endothelial nitric oxide synthase activation. Endocrinology. 2008;149(8):4183–92.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Beltowski J. Leptin and the regulation of endothelial function in physiological and pathological conditions. Clin Exp Pharmacol Physiol. 2012;39(2):168–78.PubMedCrossRefGoogle Scholar
  43. 43.
    Haynes WG, et al. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 1997;100(2):270–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rahmouni K, et al. Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes. 2005;54(7):2012–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Belin de Chantemele EJ, et al. Impact of leptin-mediated sympatho-activation on cardiovascular function in obese mice. Hypertension. 2011;58(2):271–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lu C, et al. Alterations in perivascular adipose tissue structure and function in hypertension. Eur J Pharmacol. 2011;656(1-3):68–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Prinzmetal M, et al. Angina pectoris. I. A variant form of angina pectoris; preliminary report. Am J Med. 1959;27:375–88.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ong P, et al. Coronary artery spasm as a frequent cause of acute coronary syndrome: the CASPAR (coronary artery spasm in patients with acute coronary syndrome) study. J Am Coll Cardiol. 2008;52(7):523–7.CrossRefGoogle Scholar
  49. 49.
    Li J, Zhang H, Zhang C. Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion: mechanisms and therapeutic implications. J Mol Cell Cardiol. 2012;52(4):865–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Shimokawa H. 2014 Williams Harvey Lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J. 2014;35(45):3180–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Brown NK, et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol. 2014;34(8):1621–30.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kandabashi T, et al. Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta. Circulation. 2000;101(11):1319–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Ohyama K, et al. Association of Coronary Perivascular Adipose Tissue Inflammation and Drug-Eluting Stent-Induced Coronary Hyperconstricting Responses in pigs: (18)F-Fluorodeoxyglucose positron emission tomography imaging study. Arterioscler Thromb Vasc Biol. 2017;37(9):1757–64.PubMedCrossRefGoogle Scholar
  54. 54.
    Cheang WS, et al. The peroxisome proliferator-activated receptors in cardiovascular diseases: experimental benefits and clinical challenges. Br J Pharmacol. 2015;172(23):5512–22.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ketonen J, et al. Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice. Circ J. 2010;74(7):1479–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Pasarica M, et al. Adipose tissue collagen VI in obesity. J Clin Endocrinol Metab. 2009;94(12):5155–62.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Greenstein AJ, et al. Prevalence of adverse intraoperative events during obesity surgery and their sequelae. J Am Coll Surg. 2012;215(2):271–7.e3.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Gurses KM, et al. Netrin-1 is associated with macrophage infiltration and polarization in human epicardial adipose tissue in coronary artery disease. J Cardiol. 2017;69(6):851–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Takaoka M, et al. Endovascular injury induces rapid phenotypic changes in perivascular adipose tissue. Arterioscler Thromb Vasc Biol. 2010;30(8):1576–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Bussey CE, et al. Obesity-related perivascular adipose tissue damage is reversed by sustained weight loss in the rat. Arterioscler Thromb Vasc Biol. 2016;36(7):1377–85.PubMedCrossRefGoogle Scholar
  63. 63.
    Gil-Ortega M, et al. Imbalance between pro and anti-oxidant mechanisms in perivascular adipose tissue aggravates long-term high-fat diet-derived endothelial dysfunction. PLoS One. 2014;9(4):e95312.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Antoniades C, et al. Adiponectin: from obesity to cardiovascular disease. Obes Rev. 2009;10(3):269–79.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang Y, et al. Childhood obesity prevention programs: comparative effectiveness review and meta-analysis. Rockville: Agency for Healthcare Research and Quality; 2013.Google Scholar
  66. 66.
    Fesus G, et al. Adiponectin is a novel humoral vasodilator. Cardiovasc Res. 2007;75(4):719–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Marchesi C, et al. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension. 2009;54(6):1384–92.PubMedCrossRefGoogle Scholar
  68. 68.
    Payne GA, et al. Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-beta pathway. Arterioscler Thromb Vasc Biol. 2010;30(9):1711–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Owen MK, et al. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation. 2013;128(1):9–18.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sarin S, et al. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol. 2008;102(6):767–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Natale F, et al. Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. Eur J Echocardiogr. 2009;10(4):549–55.PubMedCrossRefGoogle Scholar
  72. 72.
    Adolph TE, et al. Adipokines and non-alcoholic fatty liver disease: multiple interactions. Int J Mol Sci. 2017;18:8.Google Scholar
  73. 73.
    J. P. Morgan 32nd annual healthcare conference. J Diabetes. 2014;6(4):275–6.Google Scholar
  74. 74.
    Jeong JW, et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ J. 2007;71(4):536–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Summaries for patients. The obesity paradox in type 2 diabetes mellitus. Ann Intern Med. 2015;162(9):I–26.Google Scholar
  76. 76.
    Silaghi A, et al. Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy. Obesity (Silver Spring). 2008;16(11):2424–30.CrossRefGoogle Scholar
  77. 77.
    Iacobellis G, et al. Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol. 2004;94(8):1084–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Retraction note to: the ‘obesity paradox’ and survival after colorectal cancer: true or false? Cancer Causes Control. 2015;26(8):1203.Google Scholar
  79. 79.
    Antonopoulos AS, Antoniades C. Cardiac magnetic resonance imaging of epicardial and intramyocardial adiposity as an early sign of myocardial disease. Circ Cardiovasc Imaging. 2018;11(8):e008083.PubMedCrossRefGoogle Scholar
  80. 80.
    Marwan M, et al. CT attenuation of pericoronary adipose tissue in normal versus atherosclerotic coronary segments as defined by intravascular ultrasound. J Comput Assist Tomogr. 2017;41(5):762–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alexios S. Antonopoulos
    • 1
  • Paraskevi Papanikolaou
    • 1
  • Dimitris Tousoulis
    • 1
  1. 1.1st Department Cardiology, Hippokration Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations