Proangiogenic and Proarteriogenic Therapies in Coronary Microvasculature Dysfunction

  • Lina BadimonEmail author
  • Gemma Vilahur
  • Maria Borrell-Pages


Advances on early reperfusion therapies focused on the revascularization of the coronary epicardial arteries have lead, in the last decades, to reduced mortality in acute myocardial infarction (MI) patients. However, a large proportion of patients show inadequate myocardial perfusion because of dysfunction of the microcirculation. Importantly, impaired microvascular reperfusion correlates with the extension of infarct size. Hence, the high prevalence of microvascular dysfunction after reperfusion therapies and the poor prognostic associated with this process supports the need to search for therapeutic strategies aimed to restore the microvascular network and allow the diffusion of oxygen and nutrients to the ischemic damaged tissues. Any advancement on the molecular and cellular mechanisms that induce the repair process of microvascular dysfunction is of great interest.

In this chapter we will review the different proteins and cells known to participate in the arteriogenic and angiogenic processes to repair the coronary microcirculation. In addition, we will also discuss the potential pharmacological approaches and angiogenic and arteriogenic therapies that may promote microvasculature recovery.


Angiogenesis Reperfusion therapies Microvascular dysfunction Myocardial infarction 


Disclosures and Funding typos are different from Conclusions and References typo



 This work was supported by the Spanish Ministry of Economy and Competition and FEDER funds [SAF2016-76819-R to L.B. and SAF2015-71653-R to G.V.]; the Instituto de Salud Carlos III [CIBERCV CN16/11/00411 to L.B., TERCEL RD16/0011/018 to L.B. and FIS2016-02014 to M.B.P.]; the Generalitat of Catalunya-Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat [2014SGR1303 to L.B.]; the Fundacion Investigación Cardiovascular to L.B.; and the Spanish Society of Cardiology [SEC2015 to M.B.P.].


  1. 1.
    Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–e209. Scholar
  2. 2.
    Keeley EC. Abciximab following clopidogrel reduces post-PCI complications in patients with acute coronary syndromes. Nat Clin Pract Cardiovasc Med. 2006;3:650–1. Scholar
  3. 3.
    Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med. 1992;327:1825–31. Scholar
  4. 4.
    Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Zbinden S, et al. Beneficial effect of recruitable collaterals. A 10- year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116:975–83. Scholar
  5. 5.
    Elsman P, van’t Hof AW, de Boer MJ, Hoorntje JC, Suryapranata H, Dambrink JH, et al. Role of collateral circulation in the acute phase of ST-segment-elevation myocardial infarction treated with primary coronary intervention. Eur Heart J. 2004;25:854–8. Scholar
  6. 6.
    van der Laan AM, Piek JJ, van Royen N. Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol. 2009;6:515–23. Scholar
  7. 7.
    Bonderman D, Teml A, Jakowitsch J, Adlbrecht C, Gyöngyösi M, Sperker W, et al. Coronary no-reflow is caused by shedding of active tissue factor from dissected atherosclerotic plaque. Blood. 2002;99:2794–800.CrossRefGoogle Scholar
  8. 8.
    Hirata K, Matsuda Y, Akita H, Yokoyama M, Fukuzaki H. Myocardial ischaemia induced by endothelin in the intact rabbit: angiographic analysis. Cardiovasc Res. 1990;24:879–83.CrossRefGoogle Scholar
  9. 9.
    Ma XL, Weyrich AS, Lefer DJ, Lefer AM. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993;72:403–12.CrossRefGoogle Scholar
  10. 10.
    Maxwell L, Gavin J. Anti-oxidant therapy improves microvascular ultrastructure and perfusion in postischemic myocardium. Microvasc Res. 1992;43:255–66.CrossRefGoogle Scholar
  11. 11.
    Maier W, Altwegg LA, Corti R, Gay S, Hersberger M, Maly FE, et al. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation. 2005;111:1355–61. Scholar
  12. 12.
    Sheridan FM, Cole PG, Ramage D. Leukocyte adhesion to the coronary microvasculature during ischemia and reperfusion in an in vivo canine model. Circulation. 1996;93:1784–7.CrossRefGoogle Scholar
  13. 13.
    Kotani J, Nanto S, Mintz GS, Kitakaze M, Ohara T, Morozumi T, et al. Plaque gruel of atheromatous coronary lesion may contribute to the no reflow phenomenon in patients with acute coronary syndrome. Circulation. 2002;106:1672–7.CrossRefGoogle Scholar
  14. 14.
    Manciet LH, Poole DC, McDonagh PF, Copeland JG, Mathieu CO. Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomenon. Am J Phys. 1994;266:H1541–50. Scholar
  15. 15.
    Maxwell L, Gavin JB. The role of postischaemic reperfusion in the development of microvascular incompetence and ultrastructural damage in the myocardium. Basic Res Cardiol. 1991;86:544–53.CrossRefGoogle Scholar
  16. 16.
    Matsumura K, Jeremy RW, Schaper J, Becker LC. Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation. 1998;97:795–804.CrossRefGoogle Scholar
  17. 17.
    Reffelmann T, Kloner RA. Microvascular reperfusion injury: rapid expansion of anatomic no reflow during reperfusion in the rabbit. Am J Physiol Heart Circ Physiol. 2002;283:H1099–107. Scholar
  18. 18.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307. Scholar
  19. 19.
    Simons M, Bonow RO, Chronos NA, Cohen DJ, Giordano FJ, Hammond HK, et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation. 2000;102:e73–86.CrossRefGoogle Scholar
  20. 20.
    Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Phys. 1997;273:H1255–65. Scholar
  21. 21.
    Gray C, Packham IM, Wurmser F, Eastley NC, Hellewell PG, Ingham PW, et al. Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler Thromb Vasc Biol. 2007;27:2135–41. Scholar
  22. 22.
    Cai W, Vosschulte R, Afsah-Hedjri A, Koltai S, Kocsis E, Scholz D, et al. Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis. J Mol Cell Cardiol. 2000;32:997–1011.CrossRefGoogle Scholar
  23. 23.
    Cheng XW, Kuzuya M, Nakamura K, Maeda K, Tsuzuki M, Kim W, et al. Mechanisms underlying the impairment of ischemia-induced neovascularization in matrix metalloproteinase 2-deficient mice. Circ Res. 2007;100:904–13. Scholar
  24. 24.
    Scholz D, Schaper W. Preconditioning of arteriogenesis. Cardiovasc Res. 2005;65:513–23. Scholar
  25. 25.
    Perera D, Kanaganayagam GS, Saha M, Rashid R, Marber MS, Redwood SR. Coronary collaterals remain recruitable after percutaneous intervention. Circulation. 2007;115:2015–21. Scholar
  26. 26.
    Zimarino M, Ausiello A, Contegiacomo G, Riccardi I, Renda G, Di Iorio C, et al. Rapid decline of collateral circulation increases susceptibility to myocardial ischemia: the trade-off of successful percutaneous recanalization of chronic total occlusions. J Am Coll Cardiol. 2006;48:59–65. Scholar
  27. 27.
    Werner GS, Emig U, Mutschke O, Schwarz G, Bahrmann P, Figulla HR. Regression of collateral function after recanalization of chronic total coronary occlusions: a serial assessment by intracoronary pressure and Doppler recordings. Circulation. 2003;108:2877–82. Scholar
  28. 28.
    Heil M, Ziegelhoeffer T, Wagner S, Fernandez B, Helisch A, Martin S, et al. Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ Res. 2004;94:671–7. Scholar
  29. 29.
    Hoefer IE, van Royen N, Rectenwald JE, Deindl E, Hua J, Jost M, et al. Arteriogenesis proceeds via ICAM-1/Mac-1- mediated mechanisms. Circ Res. 2004;94:1179–85. Scholar
  30. 30.
    Grundmann S, Hoefer I, Ulusans S, van Royen N, Schirmer SH, Ozaki CK, et al. Anti-tumor necrosis factor-{alpha} therapies attenuate adaptive arteriogenesis in the rabbit. Am J Phys. 2005;289:H1497–505. Scholar
  31. 31.
    van Royen N, Voskuil M, Hoefer I, Jost M, de Graaf S, Hedwig F, et al. CD44 regulates arteriogenesis in mice and is differentially expressed in patients with poor and good collateralization. Circulation. 2004;109:1647–52. Scholar
  32. 32.
    Stabile E, Kinnaird T, la Sala A, Hanson SK, Watkins C, Campia U, et al. CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin-16. Circulation. 2006;113:118–24. Scholar
  33. 33.
    Carr AN, Howard BW, Yang HT, Eby-Wilkens E, Loos P, Varbanov A, et al. Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Cardiovasc Res. 2006;69:925–35. Scholar
  34. 34.
    Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84. Scholar
  35. 35.
    Bhargava M, Joseph A, Knesel J, Halaban R, Li Y, Pang S, et al. Scatter factor and hepatocyte growth factor: activities, properties, and mechanism. Cell Growth Differ. 1992;3:11–20.PubMedGoogle Scholar
  36. 36.
    Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76. Scholar
  37. 37.
    Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ, Gladstone SR, et al. Magnetic resonance mapping demonstrates benefits of VEGF induced myocardial angiogenesis. NatMed. 1995;1:1085–9.Google Scholar
  38. 38.
    Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat-angiogenesis and angioma formation. J Am Coll Cardiol. 2000;35:1323–30.CrossRefGoogle Scholar
  39. 39.
    Kranz A, Rau C, Kochs M, Waltenberger J. Elevation of vascular endothelial growth factor A serum levels following acute myocardial infarction. Evidence for its origin and functional significance. J Mol Cell Cardiol. 2000;32:65–72. Scholar
  40. 40.
    Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008;456:809–13. Scholar
  41. 41.
    Silvestre JS, Tamarat R, Ebrahimian TG, Le-Roux A, Clergue M, Emmanuel F, et al. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res. 2003;93:114–23. Scholar
  42. 42.
    Li X, Tjwa M, Van Hove I, Enholm B, Neven E, Paavonen K, et al. Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol. 2008;28:1614–20. Scholar
  43. 43.
    Bry M, Kivela R, Holopainen T, Anisimov A, Tammela T, Soronen J, et al. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation. 2010;122:1725–33. Scholar
  44. 44.
    Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, et al. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci U S A. 2009;106:6152–7. Scholar
  45. 45.
    Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, et al. Vascular endothelial growth factor-C (VEGF-C/ VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol. 1998;153:381–94. Scholar
  46. 46.
    Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, et al. VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol. 2009;297:H1685–96. Scholar
  47. 47.
    Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses, Circ. Res. 2003;92:1098–106. Scholar
  48. 48.
    Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, et al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med. 2003;9:936–43. Scholar
  49. 49.
    Carmeliet P. Fibroblast growth factor1 stimulates branching and survival of myocardial arteries: a goal for therapeutic angiogenesis? Circ Res. 2000;87:176–8.CrossRefGoogle Scholar
  50. 50.
    Safi J Jr, DiPaula AF Jr, Riccioni T, Kajstura J, Ambrosio G, Becker LC, et al. Adenovirus mediated acidic fibroblast growth factor gene transfer induces angiogenesis in the nonischemic rabbit heart. Microvasc Res. 1999;58:238–49. Scholar
  51. 51.
    Banai S, Jaklitsch MT, Casscells W, Shou M, Shrivastav S, Correa R, et al. Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ Res. 1991;69:76–85.CrossRefGoogle Scholar
  52. 52.
    Watanabe E, Smith DM, Sun J, Smart D, Delcarpio JB, Roberts TB, et al. Effect of basic fibroblast growth factor on angiogenesis in the infracted porcine heart. Basic Res Cardiol. 1998;93:30–7.CrossRefGoogle Scholar
  53. 53.
    Scheinowitz M, Kotlyar AA, Zimand S, Leibovitz I, Varda-Bloom N, Ohad D, et al. Effect of basic fibroblast growth factor on left ventricular geometry in rats subjected to coronary occlusion and reperfusion. Isr Med Assoc J. 2002;4:109–13.PubMedGoogle Scholar
  54. 54.
    Horrigan MC, MacIsaac AI, Nicolini FA, Vince DG, Lee P, Ellis SG, et al. Reduction in myocardial infarct size by basic fibroblast growth factor after temporary coronary occlusion in a canine model. Circulation. 1996;94:1927–33.CrossRefGoogle Scholar
  55. 55.
    Lu H, Xu X, Zhang M, Cao R, Bråkenhielm E, Li C, et al. Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc Natl Acad Sci U S A. 2007;104:12140–5. Scholar
  56. 56.
    Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med. 2003;9:604–13. Scholar
  57. 57.
    Fukuyama N, Tanaka E, Tabata Y, Fujikura H, Hagihara M, Sakamoto H, et al. Intravenous injection of phagocytes transfected ex vivo with FGF4 DNA/biodegradable gelatin complex promotes angiogenesis in a rat myocardial ischemia/ reperfusion injury model. Basic Res Cardiol. 2007;102:209–16. Scholar
  58. 58.
    Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH, et al. Intracoronary gene transfer of fibroblast growth factor- 5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med. 1996;2:534–9.CrossRefGoogle Scholar
  59. 59.
    Frontini MJ, Nong Z, Gros R, Drangova M, O’Neil C, Rahman MN, et al. Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cells. Nat Biotechnol. 2011;29:421–7. Scholar
  60. 60.
    Chen XH, Minatoguchi S, Kosai K, Yuge K, Takahashi T, Arai M, et al. In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia–reperfusion injury through its multiple actions. J Card Fail. 2007;13:874–83. Scholar
  61. 61.
    Saeed M, Martin A, Ursell P, Do L, Bucknor M, Higgins CB, et al. MR assessment of myocardial perfusion, viability, and function after intramyocardial transfer of vM202, a new plasmid human hepatocyte growth factor in ischemic swine myocardium. Radiology. 2008;249:107–18. Scholar
  62. 62.
    Pannitteri G, Petrucci E, Testa U. Coordinate release of angiogenic growth factors after acute myocardial infarction: evidence of a two wave production. J Cardiovasc Med. 2006;7:872–9. Scholar
  63. 63.
    Yasuda S, Goto Y, Baba T, Satoh T, Sumida H, Miyazaki S, et al. Enhanced secretion of cardiac hepatocyte growth factor from an infarct regionis associated with less severe ventricular enlargement and improved cardiac function. J Am Coll Cardiol. 2000;36:115–21.CrossRefGoogle Scholar
  64. 64.
    Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, et al. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol. 2002;283:H2411–9. Scholar
  65. 65.
    Arras M, ItoWD SD, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest. 1998;101:40–50. Scholar
  66. 66.
    Ribatti D. The paracrine role of Tie-2-expressing monocytes in tumor angiogenesis. Stem Cells Dev. 2009;18:703–6. Scholar
  67. 67.
    Fernandez-Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation. 2000;65:287–300.CrossRefGoogle Scholar
  68. 68.
    Arderiu G, Espinosa S, Peña E, Crespo J, Aledo R, Bogdanov VY, et al. Tissue factor variants induce monocyte transformation and transdifferentiation into endothelial cell-like cells. J Thromb Haemost. 2017;8:1689–703. Scholar
  69. 69.
    Arderiu G, Espinosa S, Pena E, Aledo R, Badimon L. Monocyte-secreted Wnt5a interacts with FZD5 in microvascular endothelial cells and induces angiogenesis through tissue factor signaling. J Mol Cell Biol. 2014;6:380–93. Scholar
  70. 70.
    Yan D, Wang X, Li D, Liu W, Li M, Qu Z, et al. Macrophages overexpressing VEGF target to infarcted myocardium and improve neovascularization and cardiac function. Int J Cardiol. 2011;164:334–8. Scholar
  71. 71.
    Takeda Y, Costa S, Delamarre E, Roncal C, Leite de Oliveira R, Squadrito ML, et al. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature. 2011;479:122–6. Scholar
  72. 72.
    Melero-Martin JM, De Obaldia ME, Allen P, Dudley AC, Klagsbrun M, Bischoff J. Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo. Tissue Eng Part A. 2010;16:2457–66. Scholar
  73. 73.
    Capoccia BJ, Gregory AD, Link DC. Recruitment of the inflammatory subset of monocytes to sites of ischemia induces angiogenesis in a monocyte chemoattractant protein-1-dependent fashion. J Leukoc Biol. 2008;84:760–8. Scholar
  74. 74.
    Gregory AD, Capoccia BJ, Woloszynek JR, Link DC. Systemic levels of G-CSF and interleukin-6 determine the angiogenic potential of bone marrow resident monocytes. J Leukoc Biol. 2010;88:123–31. Scholar
  75. 75.
    van Weel V, de Vries M, Voshol PJ, Verloop RE, Eilers PH, van Hinsbergh VW, et al. Hypercholesterolemia reduces collateral artery growth more dominantly than hyperglycemia or insulin resistance in mice. Arterioscler Thromb Vasc Biol. 2006;26:1383–90. Scholar
  76. 76.
    Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21. Scholar
  77. 77.
    Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306:2110–9. Scholar
  78. 78.
    Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199–209. Scholar
  79. 79.
    Kawamoto A, Iwasaki H, Kusano K, Murayama T, Oyamada A, Silver M, et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation. 2006;114:2163–9. Scholar
  80. 80.
    Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation. 2002;105(6):732–8.CrossRefGoogle Scholar
  81. 81.
    Schächinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol. 2004;44(8):1690–9. Scholar
  82. 82.
    Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94. Scholar
  83. 83.
    Quyyumi AA, Vasquez A, Kereiakes DJ, Klapholz M, Schaer GL, Abdel-Latif A, et al. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res. 2017;120(2):324–31. Scholar
  84. 84.
    Beitnes JO, Gjesdal O, Lunde K, Solheim S, Edvardsen T, Arnesen H, et al. Left ventricular systolic and diastolic function improve after acute myocardial infarction treated with acute percutaneous coronary intervention, but are not influenced by intracoronary injection of autologous mononuclear bone marrow cells: a 3 year serial echocardiographic sub-study of the randomized-controlled ASTAMI study. Eur J Echocardiogr. 2011;12:98–106. Scholar
  85. 85.
    Tendera M, Wojakowski W, Ruzyłło W, Chojnowska L, Kepka C, Tracz W, et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J. 2009;30:1313–21. Scholar
  86. 86.
    Steinhoff G, Nesteruk J, Wolfien M, Kundt G, PERFECT Trial Investigators Group, Börgermann J, et al. Cardiac function improvement and bone marrow response -: outcome analysis of the randomized PERFECT phase III clinical trial of intramyocardial CD133+ application after myocardial infarction. EBioMedicine. 2017;22:208–24. Scholar
  87. 87.
    Jiang M, He B, Zhang Q, Ge H, Zang MH, Han ZH, et al. Randomized controlled trials on the therapeutic effects of adult progenitor cells for myocardial infarction: meta-analysis. Expert Opin Biol Ther. 2010;10(5):667–80. Scholar
  88. 88.
    Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B. Adult bone marrow cell therapy improves survival and induces long- term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation. 2012;126(5):551–68. Scholar
  89. 89.
    Foubert P, Matrone G, Souttou B, Leré-Déan C, Barateau V, Plouët J, et al. Coadministration of endothelial and smooth muscle progenitor cells enhances the efficiency of proangiogenic cell-based therapy. Circ Res. 2008;103:751–60. Scholar
  90. 90.
    Vilahur G, Oñate B, Cubedo J, Béjar MT, Arderiu G, Peña E, et al. Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther. 2017;1:52. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lina Badimon
    • 1
    • 2
    • 3
    Email author
  • Gemma Vilahur
    • 2
    • 3
  • Maria Borrell-Pages
    • 2
    • 3
  1. 1.Cardiovascular Program ICCCInstitut de Recerca de l’Hospital de la Santa Creu i Sant PauBarcelonaSpain
  2. 2.Cardiovascular Research ChairUABBarcelonaSpain
  3. 3.CIBER-CV, Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations