Skip to main content

Coronary Microcirculation and Arrhythmias: The Two Faces of a Janus

  • Chapter
  • First Online:
Microcirculation

Abstract

Both supraventricular and ventricular arrhythmias may occur in patients without relevant epicardial coronary disease, significant structural heart disease or channelopathies. Their underlying mechanism is often unclear, and may sometimes be attributed to a preexistent coronary microvascular dysfunction which facilitates arrhythmias. Furthermore, arrhythmias may promote coronary microvascular dysfunction. We sought to clarify this relationship, starting from a clinical case of atrial fibrillation in a patient with coronary microvascular dysfunction and no epicardial coronary disease. We then explored various clinical scenarios which include ventricular arrhythmias, non-ischemic structural cardiac disease, cardiac pacing, bradyarrhythmias and conduction abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaski JC. Pathophysiology and management of patients with chest pain and normal coronary arteriograms (cardiac syndrome X). Circulation. 2004;109(5):568–72. https://doi.org/10.1161/01.CIR.0000116601.58103.62.

    Article  PubMed  Google Scholar 

  2. Pries AR, Habazettl H, Ambrosio G, et al. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc Res. 2008;80(2):165–74. https://doi.org/10.1093/cvr/cvn136.

    Article  CAS  PubMed  Google Scholar 

  3. Shaw J, Anderson T. Coronary endothelial dysfunction in non-obstructive coronary artery disease: risk, pathogenesis, diagnosis and therapy. Vasc Med. 2016;21(2):146–55. https://doi.org/10.1177/1358863X15618268.

    Article  CAS  PubMed  Google Scholar 

  4. Di Franco A, Di Monaco A, Lamendola P, et al. Evidence of exclusively silent microvascular ischemia: role of differences in nociceptive function compared to symptomatic microvascular ischemia. Eur Heart J. 2011;32:569.

    Google Scholar 

  5. Jespersen L, Hvelplund A, Abildstrøm SZ, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33(6):734–44. https://doi.org/10.1093/eurheartj/ehr331.

    Article  PubMed  Google Scholar 

  6. Sharaf B, Wood T, Shaw L, et al. Adverse outcomes among women presenting with signs and symptoms of ischemia and no obstructive coronary artery disease: findings from the National Heart, Lung, and Blood Institute-sponsored women’s ischemia syndrome evaluation (WISE) angiographic core lab. Am Heart J. 2013;166(1):134–41. https://doi.org/10.1016/j.ahj.2013.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wijesurendra RS, Casadei B. Atrial fibrillation: effects beyond the atrium? Cardiovasc Res. 2015;105(3):238–47. https://doi.org/10.1093/cvr/cvv001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Range FT, Schäfers M, Acil T, et al. Impaired myocardial perfusion and perfusion reserve associated with increased coronary resistance in persistent idiopathic atrial fibrillation. Eur Heart J. 2007;28(18):2223–30. https://doi.org/10.1093/eurheartj/ehm246.

    Article  PubMed  Google Scholar 

  9. Range FT, Paul M, Schafers KP, et al. Myocardial perfusion in nonischemic dilated cardiomyopathy with and without atrial fibrillation. J Nucl Med. 2009;50(3):390–6. https://doi.org/10.2967/jnumed.108.055665.

    Article  PubMed  Google Scholar 

  10. Van Den Bos EJ, Constantinescu AA, Van Domburg RT, Akin S, Jordaens LJ, Kofflard MJM. Minor elevations in troponin i are associated with mortality and adverse cardiac events in patients with atrial fibrillation. Eur Heart J. 2011;32(5):611–7. https://doi.org/10.1093/eurheartj/ehq491.

    Article  CAS  PubMed  Google Scholar 

  11. Bukowska A, Hammwöhner M, Sixdorf A, et al. Dronedarone prevents microcirculatory abnormalities in the left ventricle during atrial tachypacing in pigs. Br J Pharmacol. 2012;166(3):964–80. https://doi.org/10.1111/j.1476-5381.2011.01784.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goette A, Bukowska A, Dobrev D, et al. Acute atrial tachyarrhythmia induces angiotensin II type 1 receptor-mediated oxidative stress and microvascular flow abnormalities in the ventricles. Eur Heart J. 2009;30(11):1411–20. https://doi.org/10.1093/eurheartj/ehp046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim HS, Willoughby SR, Schultz C, et al. Effect of atrial fibrillation on atrial thrombogenesis in humans: impact of rate and rhythm. J Am Coll Cardiol. 2013;61(8):852–60. https://doi.org/10.1016/j.jacc.2012.11.046.

    Article  PubMed  Google Scholar 

  14. Lip GYH, Coca A, Kahan T, et al. Hypertension and cardiac arrhythmias: executive summary of a consensus document from the European Heart Rhythm Association (EHRA) and ESC council on Hypertension, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE). Eur Hear J Cardiovasc Pharmacother. 2017;3(4):235–50. https://doi.org/10.1093/ehjcvp/pvx019.

    Article  Google Scholar 

  15. Kahan T, Bergfeldt L. Left ventricular hypertrophy in hypertension: its arrhythmogenic potential. Heart. 2005;91(2):250–6. https://doi.org/10.1136/hrt.2004.042473.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349(11):1027–35. https://doi.org/10.1056/NEJMoa025050.

    Article  CAS  PubMed  Google Scholar 

  17. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012;33(22):2771–82. https://doi.org/10.1093/eurheartj/ehs246.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Möller C, Eitel C, Thiele H, Eitel I, Stiermaier T. Ventricular arrhythmias in patients with Takotsubo syndrome. J Arrhythm. 2018;34(4):369–75.

    Article  Google Scholar 

  19. Gallagher JJ. Tachycardia and cardiomyopathy: the chicken-egg dilemma revisited. J Am Coll Cardiol. 1985;6(5):1172–3. https://doi.org/10.1016/S0735-1097(85)80328-4.

    Article  CAS  PubMed  Google Scholar 

  20. Khasnis A, Jongnarangsin K, Abela G, Veerareddy S, Reddy V, Thakur R. Tachycardia-induced cardiomyopathy: a review of literature. Pacing Clin Electrophysiol. 2005;28(7):710–21. https://doi.org/10.1111/j.1540-8159.2005.00143.x.

    Article  PubMed  Google Scholar 

  21. Spinale FG, Tanaka R, Crawford FA, Zile MR. Changes in myocardial blood flow during development of and recovery from tachycardia-induced cardiomyopathy. Circulation. 1992;85(2):717–29. https://doi.org/10.1161/01.CIR.85.2.717.

    Article  CAS  PubMed  Google Scholar 

  22. Spinale FG, Grine RC, Tempel GE, Crawford FA, Zile MR. Alterations in the myocardial capillary vasculature accompany tachycardia-induced cardiomyopathy. Basic Res Cardiol. 1992;87(1):65–79. https://doi.org/10.1007/BF00795391.

    Article  CAS  PubMed  Google Scholar 

  23. Tomita M, Ikeguchi S, Kagawa K, et al. Serial histopathologic myocardial findings in a patient with ectopic atrial tachycardia-induced cardiomyopathy. J Cardiol. 1997;29(1):37–42.

    CAS  PubMed  Google Scholar 

  24. Jain AC, Mehta MC. Etiologies of left bundle branch block and correlations with hemodynamic and angiographic findings. Am J Cardiol. 2003;91(11):1375–8. https://doi.org/10.1016/S0002-9149(03)00337-0.

    Article  PubMed  Google Scholar 

  25. Koepfli P, Wyss CA, Gaemperli O, et al. Left bundle branch block causes relative but not absolute septal underperfusion during exercise. Eur Heart J. 2009;30(24):2993–9. https://doi.org/10.1093/eurheartj/ehp372.

    Article  PubMed  Google Scholar 

  26. Skalidis EI, Kochiadakis GE, Koukouraki SI, et al. Myocardial perfusion in patients with permanent ventricular pacing and normal coronary arteries. J Am Coll Cardiol. 2001;37(1):124–9. https://doi.org/10.1016/S0735-1097(00)01096-2.

    Article  CAS  PubMed  Google Scholar 

  27. Brown MD, Davies MK, Hudlicka O, et al. Cell Mol Biol Res. 1994;40(2):137–42.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vatasescu, R., Bogdan, S., Deaconu, A. (2020). Coronary Microcirculation and Arrhythmias: The Two Faces of a Janus. In: Dorobantu, M., Badimon, L. (eds) Microcirculation. Springer, Cham. https://doi.org/10.1007/978-3-030-28199-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28199-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28198-4

  • Online ISBN: 978-3-030-28199-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics