Advertisement

Structure and Function of the AAA+ ATPase p97, a Key Player in Protein Homeostasis

  • Petra HänzelmannEmail author
  • Carolina Galgenmüller
  • Hermann Schindelin
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 93)

Abstract

p97 belongs to the functional diverse superfamily of AAA+ (ATPases Associated with diverse cellular Activities) ATPases and is characterized by an N-terminal regulatory domain and two stacked hexameric ATPase domains forming a central protein conducting channel. p97 is highly versatile and has key functions in maintaining protein homeostasis including protein quality control mechanisms like the ubiquitin proteasome system (UPS) and autophagy to disassemble polyubiquitylated proteins from chromatin, membranes, macromolecular protein complexes and aggregates which are either degraded by the proteasome or recycled. p97 can use energy derived from ATP hydrolysis to catalyze substrate unfolding and threading through its central channel. The function of p97 in a large variety of different cellular contexts is reflected by its simultaneous association with different cofactors, which are involved in substrate recognition and processing, thus leading to the formation of transient multi-protein complexes. Dysregulation in protein homeostasis and proteotoxic stress are often involved in the development of cancer and neurological diseases and targeting the UPS including p97 in cancer is a well-established pharmacological strategy. In this chapter we will describe structural and functional aspects of the p97 interactome in regulating diverse cellular processes and will discuss the role of p97 in targeted cancer therapy.

Keywords

AAA+ ATPase p97 Ubiquitin Cancer therapy Protein homeostasis Protein quality control Unfoldase Protein disassembly 

Notes

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Grant GRK2243/1) and the Rudolf Virchow Center for Experimental Biomedicine.

Note Added in Proof

Two recent cryo-EM structures (Cooney et al. 2019; Twomey et al. 2019) of Cdc48–cofactor complexes bound to either a polyubiquitylated model substrate or a native substrate visualized substrate/ubiquitin-derived residues in the central channel of Cdc48. Furthermore, the Cdc48 subunits adopted a helical arrangement consistent with the generalized hand-over-hand mechanism of protein translocation by AAA+ ATPases. Processing of ubiquitylated substrates was found to be initiated by ubiquitin unfolding and the insertion of its N-terminal segment into the central Cdc48 channel.

References

  1. Abid Ali F, Costa A (2016) The MCM helicase motor of the eukaryotic replisome. J Mol Biol 428:1822–1832.  https://doi.org/10.1016/j.jmb.2016.01.024CrossRefPubMedGoogle Scholar
  2. Akutsu M, Dikic I, Bremm A (2016) Ubiquitin chain diversity at a glance. J Cell Sci 129:875–880.  https://doi.org/10.1242/jcs.183954CrossRefPubMedGoogle Scholar
  3. Alberti S, Mateju D, Mediani L, Carra S (2017) Granulostasis: protein quality control of RNP granules. Front Mol Neurosci 10:84.  https://doi.org/10.3389/fnmol.2017.00084
  4. Alexandru G, Graumann J, Smith GT, Kolawa NJ, Fang R, Deshaies RJ (2008) UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 134:804–816.  https://doi.org/10.1016/j.cell.2008.06.048
  5. Alfieri C, Chang L, Barford D (2018) Mechanism for remodelling of the cell cycle checkpoint protein MAD2 by the ATPase TRIP13. Nature 559:274–278.  https://doi.org/10.1038/s41586-018-0281-1
  6. Almeida B et al (2015) SUMOylation of the brain-predominant Ataxin-3 isoform modulates its interaction with p97. Biochim Biophys Acta 1852:1950–1959.  https://doi.org/10.1016/j.bbadis.2015.06.010
  7. Alverez C et al (2016) Allosteric indole amide inhibitors of p97: identification of a novel probe of the ubiquitin pathway. ACS Med Chem Lett 7:182–187.  https://doi.org/10.1021/acsmedchemlett.5b00396
  8. Anderson DJ et al (2015) Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis cancer. Cell 28:653–665.  https://doi.org/10.1016/j.ccell.2015.10.002
  9. Ao N, Chen Q, Liu G (2017) The small molecules targeting ubiquitin-proteasome system for cancer therapy. Comb Chem High Throughput Screen 20:403–413.  https://doi.org/10.2174/1386207320666170710124746CrossRefPubMedGoogle Scholar
  10. Arumughan A et al (2016) Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers. Nat Commun 7:13047.  https://doi.org/10.1038/ncomms13047
  11. Baldridge RD, Rapoport TA (2016) Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell 166:394–407.  https://doi.org/10.1016/j.cell.2016.05.048
  12. Bandau S, Knebel A, Gage ZO, Wood NT, Alexandru G (2012) UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1alpha accumulation. BMC Biol 10:36.  https://doi.org/10.1186/1741-7007-10-36
  13. Banerjee S et al (2016) 2.3 A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351:871–875.  https://doi.org/10.1126/science.aad7974
  14. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A (2018) Structure and function of the 26S proteasome. Annu Rev Biochem 87:697–724.  https://doi.org/10.1146/annurev-biochem-062917-011931
  15. Barthelme D, Sauer RT (2013) Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase. Proc Natl Acad Sci U S A 110:3327–3332.  https://doi.org/10.1073/pnas.1300408110
  16. Barthelme D, Sauer RT (2016) Origin and functional evolution of the Cdc48/p97/VCP AAA+ protein unfolding and remodeling machine. J Mol Biol 428:1861–1869.  https://doi.org/10.1016/j.jmb.2015.11.015
  17. Barthelme D, Chen JZ, Grabenstatter J, Baker TA, Sauer RT (2014) Architecture and assembly of the archaeal Cdc48*20S proteasome. Proc Natl Acad Sci U S A 111:1687–1694.  https://doi.org/10.1073/pnas.1404823111
  18. Bastola P, Chien J (2018) Co-selected mutations in VCP: a novel mechanism of resistance to VCP inhibitors. Cell Death Dis 9:35.  https://doi.org/10.1038/s41419-017-0049-9CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bastola P, Wang F, Schaich MA, Gan T, Freudenthal BD, Chou TF, Chien J (2017) Specific mutations in the D1-D2 linker region of VCP/p97 enhance ATPase activity and confer resistance to VCP inhibitors. Cell Death Discov 3:17065.  https://doi.org/10.1038/cddiscovery.2017.65
  20. Bastola P, Oien DB, Cooley M, Chien J (2018) Emerging cancer therapeutic targets in protein homeostasis. AAPS J 20:94.  https://doi.org/10.1208/s12248-018-0254-1CrossRefPubMedGoogle Scholar
  21. Bebeacua C, Forster A, McKeown C, Meyer HH, Zhang X, Freemont PS (2012) Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A 109:1098–1103.  https://doi.org/10.1073/pnas.1114341109
  22. Beltrao P, Bork P, Krogan NJ, van Noort V (2013) Evolution and functional cross-talk of protein post-translational modifications. Mol Syst Biol 9:714.  https://doi.org/10.1002/msb.201304521CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bento AC, Bippes CC, Kohler C, Hemion C, Frank S, Neutzner A (2018) UBXD1 is a mitochondrial recruitment factor for p97/VCP and promotes mitophagy. Sci Rep 8:12415.  https://doi.org/10.1038/s41598-018-30963-z
  24. Beuron F et al (2006) Conformational changes in the AAA ATPase p97–p47 adaptor complex. EMBO J 25:1967–1976.  https://doi.org/10.1038/sj.emboj.7601055
  25. Blythe EE, Olson KC, Chau V, Deshaies RJ (2017) Ubiquitin- and ATP-dependent unfoldase activity of p97/VCP*NPLOC4*UFD1L is enhanced by a mutation that causes multisystem proteinopathy. Proc Natl Acad Sci U S A 114:E4380–E4388.  https://doi.org/10.1073/pnas.1706205114
  26. Bodnar NO et al (2018) Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4. Nat Struct Mol Biol 25:616–622.  https://doi.org/10.1038/s41594-018-0085-x
  27. Bodnar N, Rapoport T (2017a) Toward an understanding of the Cdc48/p97 ATPase. F1000Res 6:1318  https://doi.org/10.12688/f1000research.11683.1
  28. Bodnar NO, Rapoport TA (2017b) Molecular mechanism of substrate processing by the Cdc48 ATPase complex. Cell 169:722–735 e 729  https://doi.org/10.1016/j.cell.2017.04.020
  29. Boeddrich A et al (2006) An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J 25:1547–1558.  https://doi.org/10.1038/sj.emboj.7601043
  30. Brandman O, Hegde RS (2016) Ribosome-associated protein quality control. Nat Struct Mol Biol 23:7–15.  https://doi.org/10.1038/nsmb.3147CrossRefPubMedPubMedCentralGoogle Scholar
  31. Brandman O et al (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151:1042–1054.  https://doi.org/10.1016/j.cell.2012.10.044CrossRefPubMedPubMedCentralGoogle Scholar
  32. Braunstein I, Zach L, Allan S, Kalies KU, Stanhill A (2015) Proteasomal degradation of preemptive quality control (pQC) substrates is mediated by an AIRAPL-p97 complex. Mol Biol Cell 26:3719–3727.  https://doi.org/10.1091/mbc.e15-02-0085
  33. Bruderer RM, Brasseur C, Meyer HH (2004) The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism. J Biol Chem 279:49609–49616.  https://doi.org/10.1074/jbc.m408695200
  34. Buchberger A, Howard MJ, Proctor M, Bycroft M (2001) The UBX domain: a widespread ubiquitin-like module. J Mol Biol 307:17–24.  https://doi.org/10.1006/jmbi.2000.4462CrossRefPubMedGoogle Scholar
  35. Buchberger A, Schindelin H, Hänzelmann P (2015) Control of p97 function by cofactor binding. FEBS Lett 589:2578–2589.  https://doi.org/10.1016/j.febslet.2015.08.028
  36. Bug M, Meyer H (2012) Expanding into new markets–VCP/p97 in endocytosis and autophagy. J Struct Biol 179:78–82.  https://doi.org/10.1016/j.jsb.2012.03.003
  37. Bulfer SL, Chou TF, Arkin MR (2016) p97 disease mutations modulate nucleotide-induced conformation to alter protein–protein interactions. ACS Chem Biol 11:2112–2116.  https://doi.org/10.1021/acschembio.6b00350
  38. Burnett JC et al (2017) A threonine turnstile defines a dynamic amphiphilic binding motif in the AAA ATPase p97 allosteric binding site. Org Biomol Chem 15:4096–4114.  https://doi.org/10.1039/c7ob00526a
  39. Cancer Genome Atlas Research Network et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120.  https://doi.org/10.1038/ng.2764
  40. Cappadocia L, Lima CD (2018) Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem Rev 118:889–918.  https://doi.org/10.1021/acs.chemrev.6b00737CrossRefPubMedGoogle Scholar
  41. Carvalho P, Goder V, Rapoport TA (2006) Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361–373.  https://doi.org/10.1016/j.cell.2006.05.043CrossRefPubMedGoogle Scholar
  42. Chapman E, Fry AN, Kang M (2011) The complexities of p97 function in health and disease. Mol Biosyst 7:700–710.  https://doi.org/10.1039/c0mb00176g
  43. Chapman E, Maksim N, de la Cruz F, La Clair JJ (2015) Inhibitors of the AAA+ chaperone p97. Molecules 20:3027–3049.  https://doi.org/10.3390/molecules20023027
  44. Chen Z, Morales JE, Guerrero PA, Sun H, McCarty JH (2018) PTPN12/PTP-PEST regulates phosphorylation-dependent ubiquitination and stability of focal adhesion substrates in invasive glioblastoma. Cells Cancer Res 78:3809–3822.  https://doi.org/10.1158/0008-5472.can-18-0085
  45. Chia WS, Chia DX, Rao F, Bar Nun S, Geifman Shochat S (2012) ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain. PLoS One 7:e50490.  https://doi.org/10.1371/journal.pone.0050490
  46. Chimenti MS et al (2015) A fragment-based ligand screen against part of a large protein machine: the ND1 domains of the AAA+ ATPase p97/VCP. J Biomol Screen 20:788–800.  https://doi.org/10.1177/1087057115570550
  47. Chou TF et al (2014) Specific inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains. J Mol Biol 426:2886–2899.  https://doi.org/10.1016/j.jmb.2014.05.022
  48. Chou TF et al (2011) Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc Natl Acad Sci U S A 108:4834–4839.  https://doi.org/10.1073/pnas.1015312108CrossRefPubMedPubMedCentralGoogle Scholar
  49. Chou TF, Li K, Frankowski KJ, Schoenen FJ, Deshaies RJ (2013) Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem 8:297–312.  https://doi.org/10.1002/cmdc.201200520
  50. Christianson JC, Ye Y (2014) Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 21:325–335.  https://doi.org/10.1038/nsmb.2793CrossRefPubMedGoogle Scholar
  51. Cooney I et al (2019) Structure of the Cdc48 segregase in the act of unfolding an authentic substrate. Science.  https://doi.org/10.1126/science.aax0486
  52. Csizmok V, Forman-Kay JD (2018) Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. Curr Opin Struct Biol 48:58–67.  https://doi.org/10.1016/j.sbi.2017.10.013CrossRefPubMedGoogle Scholar
  53. Dargemont C, Ossareh-Nazari B (2012) Cdc48/p97, a key actor in the interplay between autophagy and ubiquitin/proteasome catabolic pathways. Biochim Biophys Acta 1823:138–144.  https://doi.org/10.1016/j.bbamcr.2011.07.011
  54. Davies JM, Brunger AT, Weis WI (2008) Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 16:715–726.  https://doi.org/10.1016/j.str.2008.02.010
  55. Davis EJ, Lachaud C, Appleton P, Macartney TJ, Nathke I, Rouse J (2012) DVC1 (C1orf124) recruits the p97 protein segregase to sites of DNA damage. Nat Struct Mol Biol 19:1093–1100.  https://doi.org/10.1038/nsmb.2394
  56. Defenouillere Q et al (2013) Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc Natl Acad Sci U S A 110:5046–5051.  https://doi.org/10.1073/pnas.1221724110
  57. Defenouillere Q, Fromont-Racine M (2017) The ribosome-bound quality control complex: from aberrant peptide clearance to proteostasis maintenance. Curr Genet 63:997–1005.  https://doi.org/10.1007/s00294-017-0708-5CrossRefPubMedGoogle Scholar
  58. DeLaBarre B, Brunger AT (2003) Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Biol 10:856–863.  https://doi.org/10.1038/nsb972
  59. DeLaBarre B, Christianson JC, Kopito RR, Brunger AT (2006) Central pore residues mediate the p97/VCP activity required for ERAD. Mol Cell 22:451–462.  https://doi.org/10.1016/j.molcel.2006.03.036
  60. den Besten W, Verma R, Kleiger G, Oania RS, Deshaies RJ (2012) NEDD8 links cullin-RING ubiquitin ligase function to the p97 pathway. Nat Struct Mol Biol 19:511–516, S511.  https://doi.org/10.1038/nsmb.2269
  61. Deshaies RJ (2014) Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol 12:94.  https://doi.org/10.1186/s12915-014-0094-0
  62. Deville C, Carroni M, Franke KB, Topf M, Bukau B, Mogk A, Saibil HR (2017) Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Sci Adv 3:e1701726.  https://doi.org/10.1126/sciadv.1701726
  63. Dewar JM, Low E, Mann M, Raschle M, Walter JC (2017) CRL2(Lrr1) promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 31:275–290.  https://doi.org/10.1101/gad.291799.116
  64. Dikic I (2017) Proteasomal and autophagic degradation systems. Annu Rev Biochem 86:193–224.  https://doi.org/10.1146/annurev-biochem-061516-044908CrossRefPubMedGoogle Scholar
  65. Ding N, Zhu Q (2018) Disulfiram combats cancer via crippling valosin-containing protein/p97 segregase adaptor NPL4. Transl Cancer Res 7:S495–S499.  https://doi.org/10.21037/tcr.2018.03.33
  66. Dreveny I, Kondo H, Uchiyama K, Shaw A, Zhang X, Freemont PS (2004) Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47. EMBO J 23:1030–1039.  https://doi.org/10.1038/sj.emboj.7600139
  67. Erzberger JP, Berger JM (2006) Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 35:93–114.  https://doi.org/10.1146/annurev.biophys.35.040405.101933
  68. Esaki M, Johjima-Murata A, Islam MT, Ogura T (2018) Biological and pathological implications of an alternative ATP-powered proteasomal assembly with Cdc48 and the 20S peptidase. Front Mol Biosci 5:56.  https://doi.org/10.3389/fmolb.2018.00056
  69. Ewens CA et al (2014) The p97-FAF1 protein complex reveals a common mode of p97 adaptor binding. J Biol Chem 289:12077–12084.  https://doi.org/10.1074/jbc.m114.559591
  70. Ewens CA, Kloppsteck P, Forster A, Zhang X, Freemont PS (2010) Structural and functional implications of phosphorylation and acetylation in the regulation of the AAA+ protein p97. Biochem Cell Biol 88:41–48.  https://doi.org/10.1139/o09-128
  71. Fang CJ et al (2015) Evaluating p97 inhibitor analogues for their domain selectivity and potency against the p97–p47 complex. ChemMedChem 10:52–56.  https://doi.org/10.1002/cmdc.201402420
  72. Fernandez-Saiz V, Buchberger A (2010) Imbalances in p97 co-factor interactions in human proteinopathy. EMBO Rep 11:479–485.  https://doi.org/10.1038/embor.2010.49
  73. Ferreira de Freitas R et al (2018) Identification and structure-activity relationship of HDAC6 zinc-finger ubiquitin binding domain inhibitors. J Med Chem 61:4517–4527.  https://doi.org/10.1021/acs.jmedchem.8b00258
  74. Fessart D, Marza E, Taouji S, Delom F, Chevet E (2013) p97/CDC-48: proteostasis control in tumor cell biology. Cancer Lett 337:26–34.  https://doi.org/10.1016/j.canlet.2013.05.030
  75. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513.  https://doi.org/10.1146/annurev.biochem.78.081507.101607CrossRefPubMedPubMedCentralGoogle Scholar
  76. Forouzan D, Ammelburg M, Hobel CF, Stroh LJ, Sessler N, Martin J, Lupas AN (2012) The archaeal proteasome is regulated by a network of AAA ATPases. J Biol Chem 287:39254–39262.  https://doi.org/10.1074/jbc.M112.386458CrossRefPubMedPubMedCentralGoogle Scholar
  77. Franz A et al (2011) CDC-48/p97 coordinates CDT-1 degradation with GINS chromatin dissociation to ensure faithful DNA replication. Mol Cell 44:85–96.  https://doi.org/10.1016/j.molcel.2011.08.028
  78. Franz A et al (2016b) Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun 7:10612.  https://doi.org/10.1038/ncomms10612
  79. Franz A, Ackermann L, Hoppe T (2014) Create and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP. Biochim Biophys Acta 1843:205–215.  https://doi.org/10.1016/j.bbamcr.2013.03.031
  80. Franz A, Ackermann L, Hoppe T (2016a) Ring of change: CDC48/p97 drives protein dynamics at chromatin. Front Genet 7:73.  https://doi.org/10.3389/fgene.2016.00073
  81. Gaggioli V, Zegerman P (2017) Terminating the replication helicase. Nat Cell Biol 19:410–412.  https://doi.org/10.1038/ncb3519CrossRefPubMedGoogle Scholar
  82. Ganji R, Mukkavalli S, Somanji F, Raman M (2018) The VCP-UBXN1 complex mediates triage of ubiquitylated cytosolic proteins bound to the BAG6 complex. Mol Cell Biol.  https://doi.org/10.1128/mcb.00154-18
  83. Gareau A, Rico C, Boerboom D, Nadeau ME (2018) In vitro efficacy of a first-generation valosin-containing protein inhibitor (CB-5083) against canine lymphoma. Vet Comp Oncol 16:311–317.  https://doi.org/10.1111/vco.12380
  84. Gates SN et al (2017) Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science 357:273–279.  https://doi.org/10.1126/science.aan1052
  85. Ge Z et al (2018) Integrated genomic analysis of the ubiquitin pathway across cancer types. Cell Rep 23(213–226):e213.  https://doi.org/10.1016/j.celrep.2018.03.047CrossRefGoogle Scholar
  86. Ghosal G, Leung JW, Nair BC, Fong KW, Chen J (2012) Proliferating cell nuclear antigen (PCNA)-binding protein C1orf124 is a regulator of translesion synthesis. J Biol Chem 287:34225–34233.  https://doi.org/10.1074/jbc.m112.400135
  87. Gibbs-Seymour I et al (2015) Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage. Mol Cell 57:150–164.  https://doi.org/10.1016/j.molcel.2014.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  88. Gugliotta G et al (2017) Valosin-containing protein/p97 as a novel therapeutic target in acute lymphoblastic leukemia. Neoplasia 19:750–761.  https://doi.org/10.1016/j.neo.2017.08.001
  89. Gui L et al (2016) Evaluating p97 inhibitor analogues for potency against p97–p37 and p97–Npl4–Ufd1 complexes. ChemMedChem 11:953–957.  https://doi.org/10.1002/cmdc.201600036
  90. Haines DS (2010) p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association? Genes Cancer 1:753–763.  https://doi.org/10.1177/1947601910381381CrossRefPubMedPubMedCentralGoogle Scholar
  91. Han H, Monroe N, Sundquist WI, Shen PS, Hill CP (2017) The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets. Elife 6.  https://doi.org/10.7554/elife.31324
  92. Hänzelmann P, Schindelin H (2011) The structural and functional basis of the p97/valosin-containing protein (VCP)-interacting motif (VIM): mutually exclusive binding of cofactors to the N-terminal domain of p97. J Biol Chem 286:38679–38690.  https://doi.org/10.1074/jbc.m111.274506
  93. Hänzelmann P, Schindelin H (2016a) Characterization of an additional binding surface on the p97 N-terminal domain involved in bipartite cofactor interactions. Structure 24:140–147.  https://doi.org/10.1016/j.str.2015.10.027
  94. Hänzelmann P, Schindelin H (2016b) Structural basis of ATP hydrolysis and intersubunit signaling in the AAA+ ATPase p97. Structure 24:127–139.  https://doi.org/10.1016/j.str.2015.10.026
  95. Hänzelmann P, Schindelin H (2017) The interplay of cofactor interactions and post-translational modifications in the regulation of the AAA+ ATPase p97. Front Mol Biosci 4:21.  https://doi.org/10.3389/fmolb.2017.00021
  96. Hänzelmann P, Buchberger A, Schindelin H (2011) Hierarchical binding of cofactors to the AAA ATPase p97. Structure 19:833–843  https://doi.org/10.1016/j.str.2011.03.018
  97. Hänzelmann P, Schäfer A, Völler D, Schindelin H (2012) Structural insights into functional modes of proteins involved in ubiquitin family pathways. Methods Mol Biol 832:547–576.  https://doi.org/10.1007/978-1-61779-474-2_39CrossRefPubMedGoogle Scholar
  98. Hao Q et al (2015) A non-canonical role of the p97 complex in RIG-I antiviral signaling. EMBO J 34:2903–2920.  https://doi.org/10.15252/embj.201591888
  99. He J et al (2014) Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem 289:27278–27289.  https://doi.org/10.1074/jbc.m114.589812
  100. Heidelberger JB, Voigt A, Borisova ME, Petrosino G, Ruf S, Wagner SA, Beli P (2018) Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep 19.  https://doi.org/10.15252/embr.201744754
  101. Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML (2017) Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol 24:325–336.  https://doi.org/10.1038/nsmb.3366CrossRefPubMedGoogle Scholar
  102. Heo JM et al (2010) A stress-responsive system for mitochondrial protein degradation. Mol Cell 40:465–480.  https://doi.org/10.1016/j.molcel.2010.10.021CrossRefPubMedPubMedCentralGoogle Scholar
  103. Her NG, Toth JI, Ma CT, Wei Y, Motamedchaboki K, Sergienko E, Petroski MD (2016) p97 composition changes caused by allosteric inhibition are suppressed by an on-target mechanism that increases the enzyme’s ATPase activity cell. Chem Biol 23:517–528.  https://doi.org/10.1016/j.chembiol.2016.03.012
  104. Huang EY et al (2018) A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates. Mol Biol Cell 29:1021–1030.  https://doi.org/10.1091/mbc.e17-08-0514
  105. Huang X, Dixit VM (2016) Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res 26:484–498.  https://doi.org/10.1038/cr.2016.31CrossRefPubMedPubMedCentralGoogle Scholar
  106. Huang C, Li G, Lennarz WJ (2012) Dynamic flexibility of the ATPase p97 is important for its interprotomer motion transmission. Proc Natl Acad Sci U S A 109:9792–9797.  https://doi.org/10.1073/pnas.1205853109
  107. Hülsmann J, Kravic B, Weith M, Gstaiger M, Aebersold R, Collins BC, Meyer H (2018) AP-SWATH reveals direct involvement of VCP/p97 in integrated stress response signaling through facilitating CReP/PPP1R15B degradation. Mol Cell Proteomics 17:1295–1307.  https://doi.org/10.1074/mcp.ra117.000471
  108. Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322.  https://doi.org/10.1146/annurev-biochem-051810-094654CrossRefPubMedGoogle Scholar
  109. Huyton T et al (2003) The crystal structure of murine p97/VCP at 3.6 Å. J Struct Biol 144:337–348.  https://doi.org/10.1016/j.jsb.2003.10
  110. Isaacson RL, Pye VE, Simpson P, Meyer HH, Zhang X, Freemont PS, Matthews S (2007) Detailed structural insights into the p97-Npl4-Ufd1 interface. J Biol Chem 282:21361–21369.  https://doi.org/10.1074/jbc.m610069200
  111. Joazeiro CAP (2017) Ribosomal stalling during translation: providing substrates for ribosome-associated protein quality control. Annu Rev Cell Dev Biol 33:343–368.  https://doi.org/10.1146/annurev-cellbio-111315-125249CrossRefPubMedGoogle Scholar
  112. Kadowaki H, Satrimafitrah P, Takami Y, Nishitoh H (2018) Molecular mechanism of ER stress-induced pre-emptive quality control involving association of the translocon, Derlin-1, and HRD1. Sci Rep 8:7317.  https://doi.org/10.1038/s41598-018-25724-x
  113. Kang W, Yang JK (2011) Crystal structure of human FAF1 UBX domain reveals a novel FcisP touch-turn motif in p97/VCP-binding region. Biochem Biophys Res Commun 407:531–534.  https://doi.org/10.1016/j.bbrc.2011.03.052
  114. Karbowski M, Youle RJ (2011) Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol 23:476–482.  https://doi.org/10.1016/j.ceb.2011.05.007CrossRefPubMedPubMedCentralGoogle Scholar
  115. Kato Y, Miyakawa T, Tanokura M (2018) Overview of the mechanism of cytoskeletal motors based on structure. Biophys Rev 10:571–581.  https://doi.org/10.1007/s12551-017-0368-1CrossRefPubMedGoogle Scholar
  116. Kern M, Fernandez-Saiz V, Schafer Z, Buchberger A (2009) UBXD1 binds p97 through two independent binding sites. Biochem Biophys Res Commun 380:303–307.  https://doi.org/10.1016/j.bbrc.2009.01.076
  117. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180.  https://doi.org/10.1146/annurev.cellbio.22.010605.093503CrossRefPubMedGoogle Scholar
  118. Kim SJ et al (2014) Structural basis for ovarian tumor domain-containing protein 1 (OTU1) binding to p97/valosin-containing protein (VCP). J Biol Chem 289:12264–12274.  https://doi.org/10.1074/jbc.m113.523936
  119. Kim KH, Kang W, Suh SW, Yang JK (2011) Crystal structure of FAF1 UBX domain in complex with p97/VCP N domain reveals a conformational change in the conserved FcisP touch-turn motif of UBX domain. Proteins 79:2583–2587.  https://doi.org/10.1002/prot.23073
  120. Kocaturk NM, Gozuacik D (2018) Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Front Cell Dev Biol 6:128.  https://doi.org/10.3389/fcell.2018.00128CrossRefPubMedPubMedCentralGoogle Scholar
  121. Kondo H, Rabouille C, Newman R, Levine TP, Pappin D, Freemont P, Warren G (1997) p47 is a cofactor for p97-mediated membrane fusion. Nature 388:75–78.  https://doi.org/10.1038/40411
  122. Kumari N, Lee KK, Jha S (2018) Targeting the ubiquitin proteasome system in cancer. IntechOpen.  https://doi.org/10.5772/intechopen.76705
  123. Lan B, Chai S, Wang P, Wang K (2017) VCP/p97/Cdc48, a linking of protein homeostasis and cancer therapy. Curr Mol Med 17:608–618.  https://doi.org/10.2174/1566524018666180308111238CrossRefPubMedGoogle Scholar
  124. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482:186–191.  https://doi.org/10.1038/nature10774CrossRefPubMedPubMedCentralGoogle Scholar
  125. LaPorte MG et al (2018) Optimization of phenyl indole inhibitors of the AAA+ ATPase p97. ACS Med Chem Lett 9:1075–1081.  https://doi.org/10.1021/acsmedchemlett.8b00372
  126. Le Moigne R et al (2017) The p97 inhibitor CB-5083 is a unique disrupter of protein homeostasis in models of multiple myeloma. Mol Cancer Ther 16:2375–2386.  https://doi.org/10.1158/1535-7163.mct-17-0233
  127. Le LT, Kang W, Kim JY, Le OT, Lee SY, Yang JK (2016) Structural details of Ufd1 binding to p97 and their functional implications in ER-associated degradation. PLoS One 11:e0163394.  https://doi.org/10.1371/journal.pone.0163394
  128. Lee JY et al (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980.  https://doi.org/10.1038/emboj.2009.405
  129. Lee JJ, Park JK, Jeong J, Jeon H, Yoon JB, Kim EE, Lee KJ (2013) Complex of Fas-associated factor 1 (FAF1) with valosin-containing protein (VCP)-Npl4-Ufd1 and polyubiquitinated proteins promotes endoplasmic reticulum-associated degradation (ERAD). J Biol Chem 288:6998–7011.  https://doi.org/10.1074/jbc.m112.417576
  130. Lee BH, Schwager F, Meraldi P, Gotta M (2018) p37/UBXN2B regulates spindle orientation by limiting cortical NuMA recruitment via PP1/Repo-Man. J Cell Biol 217:483–493.  https://doi.org/10.1083/jcb.201707050
  131. Li G, Zhao G, Schindelin H, Lennarz WJ (2008) Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD. Biochem Biophys Res Commun 375:247–251.  https://doi.org/10.1016/j.bbrc.2008.08.018
  132. Li G, Huang C, Zhao G, Lennarz WJ (2012) Interprotomer motion-transmission mechanism for the hexameric AAA ATPase p97. Proc Natl Acad Sci U S A 109:3737–3741.  https://doi.org/10.1073/pnas.1200255109
  133. Li ZH, Wang Y, Xu M, Jiang T (2017) Crystal structures of the UBX domain of human UBXD7 and its complex with p97 ATPase. Biochem Biophys Res Commun 486:94–100.  https://doi.org/10.1016/j.bbrc.2017.03.005
  134. Liebelt F, Vertegaal AC (2016) Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 311:284–296.  https://doi.org/10.1152/ajpcell.00091.2016CrossRefGoogle Scholar
  135. Lim JJ et al (2016a) Structural insights into the interaction of p97 N-terminus domain and VBM in rhomboid protease, RHBDL4. Biochem J 473:2863–2880.  https://doi.org/10.1042/bcj20160237
  136. Lim JJ et al (2016b) Structural insights into the interaction of human p97 N-terminal domain and SHP motif in Derlin-1 rhomboid pseudoprotease. FEBS Lett 590:4402–4413.  https://doi.org/10.1002/1873-3468.12447
  137. Liu S, Yang H, Zhao J, Zhang YH, Song AX, Hu HY (2013) NEDD8 ultimate buster-1 long (NUB1L) protein promotes transfer of NEDD8 to proteasome for degradation through the P97UFD1/NPL4 complex. J Biol Chem 288:31339–31349.  https://doi.org/10.1074/jbc.m113.484816
  138. Maghames CM et al (2018) NEDDylation promotes nuclear protein aggregation and protects the Ubiquitin Proteasome System upon proteotoxic stress. Nat Commun 9:4376.  https://doi.org/10.1038/s41467-018-06365-0CrossRefPubMedPubMedCentralGoogle Scholar
  139. Magnaghi P et al (2013) Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol 9:548–556.  https://doi.org/10.1038/nchembio.1313
  140. Manasanch EE, Orlowski RZ (2017) Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14:417–433.  https://doi.org/10.1038/nrclinonc.2016.206CrossRefPubMedPubMedCentralGoogle Scholar
  141. Maric M, Mukherjee P, Tatham MH, Hay R, Labib K (2017) Ufd1-Npl4 recruit Cdc48 for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. Cell Rep 18:3033–3042.  https://doi.org/10.1016/j.celrep.2017.03.020
  142. Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192.  https://doi.org/10.1146/annurev-biochem-061516-044916CrossRefPubMedGoogle Scholar
  143. Meyer H, Weihl CC (2014) The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci 127:3877–3883.  https://doi.org/10.1242/jcs.093831
  144. Meyer HH, Kondo H, Warren G (1998) The p47 co-factor regulates the ATPase activity of the membrane fusion protein, p97. FEBS Lett 437:255–257.  https://doi.org/10.1016/S0014-5793(98)01232-0
  145. Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117–123.  https://doi.org/10.1038/ncb2407
  146. Miller JM, Enemark EJ (2016) Fundamental characteristics of AAA+ protein family structure and function. Archaea 2016:9294307.  https://doi.org/10.1155/2016/9294307
  147. Mishima Y et al (2015) Ricolinostat (ACY-1215) induced inhibition of aggresome formation accelerates carfilzomib-induced multiple myeloma cell death. Br J Haematol 169:423–434.  https://doi.org/10.1111/bjh.13315
  148. Mogk A, Kummer E, Bukau B (2015) Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci 2:22.  https://doi.org/10.3389/fmolb.2015.00022
  149. Moreno SP, Bailey R, Campion N, Herron S, Gambus A (2014) Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346:477–481.  https://doi.org/10.1126/science.1253585CrossRefPubMedGoogle Scholar
  150. Mosbech A et al (2012) DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nat Struct Mol Biol 19:1084–1092.  https://doi.org/10.1038/nsmb.2395
  151. Na H, Song G (2016) Predicting the functional motions of p97 using symmetric normal modes. Proteins 84:1823–1835.  https://doi.org/10.1002/prot.25164
  152. Nguyen TV, Li J, Lu CJ, Mamrosh JL, Lu G, Cathers BE, Deshaies RJ (2017) p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates. Proc Natl Acad Sci U S A 114:3565–3571.  https://doi.org/10.1073/pnas.1700949114
  153. Nie M, Boddy MN (2016) Cooperativity of the SUMO and ubiquitin pathways in genome stability. Biomolecules 6:14.  https://doi.org/10.3390/biom6010014CrossRefPubMedPubMedCentralGoogle Scholar
  154. Niwa H, Ewens CA, Tsang C, Yeung HO, Zhang X, Freemont PS (2012) The role of the N-domain in the ATPase activity of the mammalian AAA ATPase p97/VCP. J Biol Chem 287:8561–8570.  https://doi.org/10.1074/jbc.m111.302778
  155. Papadopoulos C et al (2017) VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 36:135–150.  https://doi.org/10.15252/embj.201695148
  156. Papadopoulos C, Meyer H (2017) Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy. Curr Biol 27:R1330–R1341.  https://doi.org/10.1016/j.cub.2017.11.012CrossRefPubMedGoogle Scholar
  157. Pilla E, Schneider K, Bertolotti A (2017) Coping with protein quality control failure. Annu Rev Cell Dev Biol 33:439–465.  https://doi.org/10.1146/annurev-cellbio-111315-125334CrossRefPubMedGoogle Scholar
  158. Polucci P et al (2013) Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships. J Med Chem 56:437–450.  https://doi.org/10.1021/jm3013213CrossRefPubMedGoogle Scholar
  159. Protter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26:668–679.  https://doi.org/10.1016/j.tcb.2016.05.004CrossRefPubMedPubMedCentralGoogle Scholar
  160. Puumalainen MR, Lessel D, Ruthemann P, Kaczmarek N, Bachmann K, Ramadan K, Naegeli H (2014) Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity. Nat Commun 5:3695.  https://doi.org/10.1038/ncomms4695
  161. Pye VE et al (2007) Structural insights into the p97-Ufd1-Npl4 complex. Proc Natl Acad Sci U S A 104:467–472.  https://doi.org/10.1073/pnas.0603408104
  162. Qiu L et al (2010) Structure and function of the PLAA/Ufd3-p97/Cdc48 complex. J Biol Chem 285:365–372.  https://doi.org/10.1074/jbc.m109.044685
  163. Ramadan K, Halder S, Wiseman K, Vaz B (2017) Strategic role of the ubiquitin-dependent segregase p97 (VCP or Cdc48) in DNA replication. Chromosoma 126:17–32.  https://doi.org/10.1007/s00412-016-0587-4
  164. Raman M et al (2015) Systematic proteomics of the VCP-UBXD adaptor network identifies a role for UBXN10 in regulating ciliogenesis. Nat Cell Biol 17:1356–1369.  https://doi.org/10.1038/ncb3238
  165. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727–736.  https://doi.org/10.1016/j.cell.2013.07.038CrossRefPubMedGoogle Scholar
  166. Rao MV, Williams DR, Cocklin S, Loll PJ (2017) Interaction between the AAA(+) ATPase p97 and its cofactor ataxin3 in health and disease: nucleotide-induced conformational changes regulate cofactor binding. J Biol Chem 292:18392–18407.  https://doi.org/10.1074/jbc.m117.806281
  167. Rezvani K (2016) UBXD Proteins: a family of proteins with diverse functions in cancer. Int J Mol Sci 17.  https://doi.org/10.3390/ijms17101724
  168. Ripstein ZA, Huang R, Augustyniak R, Kay LE, Rubinstein JL (2017) Structure of a AAA+ unfoldase in the process of unfolding substrate. Elife 6.  https://doi.org/10.7554/elife.25754
  169. Ritz D et al (2011) Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations. Nat Cell Biol 13:1116–1123.  https://doi.org/10.1038/ncb2301
  170. Rouiller I, Butel VM, Latterich M, Milligan RA, Wilson-Kubalek EM (2000) A major conformational change in p97 AAA ATPase upon ATP binding. Mol Cell 6:1485–1490.  https://doi.org/10.1016/S1097-2765(00)00144-1
  171. Ruthemann P, Balbo Pogliano C, Naegeli H (2016) Global-genome nucleotide excision repair controlled by ubiquitin/sumo modifiers. Front Genet 7:68.  https://doi.org/10.3389/fgene.2016.00068CrossRefPubMedPubMedCentralGoogle Scholar
  172. Ryslava H, Doubnerova V, Kavan D, Vanek O (2013) Effect of posttranslational modifications on enzyme function and assembly. J Proteomics 92:80–109.  https://doi.org/10.1016/j.jprot.2013.03.025CrossRefPubMedGoogle Scholar
  173. Saeki Y (2017) Ubiquitin recognition by the proteasome. J Biochem 161:113–124.  https://doi.org/10.1093/jb/mvw091CrossRefPubMedGoogle Scholar
  174. Saffert P, Enenkel C, Wendler P (2017) Structure and function of p97 and Pex1/6 Type II AAA+ complexes. Front Mol Biosci 4:33.  https://doi.org/10.3389/fmolb.2017.00033
  175. Sahtoe DD, Sixma TK (2015) Layers of DUB regulation. Trends Biochem Sci 40:456–467.  https://doi.org/10.1016/j.tibs.2015.05.002CrossRefPubMedGoogle Scholar
  176. Schoebel S et al (2017) Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548:352–355.  https://doi.org/10.1038/nature23314
  177. Schuetz AK, Kay LE (2016) A dynamic molecular basis for malfunction in disease mutants of p97/VCP. Elife 5.  https://doi.org/10.7554/elife.20143
  178. Schuller JM, Beck F, Lossl P, Heck AJ, Forster F (2016) Nucleotide-dependent conformational changes of the AAA+ ATPase p97 revisited. FEBS Lett 590:595–604.  https://doi.org/10.1002/1873-3468.12091
  179. Schwertman P, Bekker-Jensen S, Mailand N (2016) Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 17:379–394.  https://doi.org/10.1038/nrm.2016.58CrossRefPubMedGoogle Scholar
  180. Segura-Cabrera A, Tripathi R, Zhang X, Gui L, Chou TF, Komurov K (2017) A structure- and chemical genomics-based approach for repositioning of drugs against VCP/p97 ATPase. Sci Rep 7:44912.  https://doi.org/10.1038/srep44912
  181. Skrott Z et al (2017) Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552:194–199.  https://doi.org/10.1038/nature25016
  182. Stach L, Freemont PS (2017) The AAA+ ATPase p97, a cellular multitool. Biochem J 474:2953–2976.  https://doi.org/10.1042/bcj20160783
  183. Stapf C, Cartwright E, Bycroft M, Hofmann K, Buchberger A (2011) The general definition of the p97/valosin-containing protein (VCP)-interacting motif (VIM) delineates a new family of p97 cofactors. J Biol Chem 286:38670–38678.  https://doi.org/10.1074/jbc.m111.274472
  184. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380.  https://doi.org/10.1083/jcb.201007013
  185. Tang WK, Xia D (2013) Altered intersubunit communication is the molecular basis for functional defects of pathogenic p97 mutants. J Biol Chem 288:36624–36635.  https://doi.org/10.1074/jbc.m113.488924
  186. Tang WK, Xia D (2016) Mutations in the human AAA(+) chaperone p97 and related diseases. Front Mol Biosci 3:79.  https://doi.org/10.3389/fmolb.2016.00079
  187. Tang WK, Li D, Li CC, Esser L, Dai R, Guo L, Xia D (2010) A novel ATP-dependent conformation in p97 N-D1 fragment revealed by crystal structures of disease-related mutants. EMBO J 29:2217–2229.  https://doi.org/10.1038/emboj.2010.104
  188. Tang WK, Zhang T, Ye Y, Xia D (2017) Structural basis for nucleotide-modulated p97 association with the ER membrane. Cell Discov 3:17045.  https://doi.org/10.1038/celldisc.2017.45
  189. Tang WK, Odzorig T, Jin W, Xia D (2019) Structural basis of p97 inhibition by the site-selective anti-cancer compound CB-5083. Mol Pharmacol 95:286-293.  https://doi.org/10.1124/mol.118.114256
  190. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206.  https://doi.org/10.1038/nature20413CrossRefPubMedGoogle Scholar
  191. Torrecilla I, Oehler J, Ramadan K (2017) The role of ubiquitin-dependent segregase p97 (VCP or Cdc48) in chromatin dynamics after DNA double strand breaks. Philos Trans R Soc Lond B Biol Sci 372.  https://doi.org/10.1098/rstb.2016.0282
  192. Trusch F et al (2015) The N-terminal region of the ubiquitin regulatory X (UBX) domain-containing protein 1 (UBXD1) modulates interdomain communication within the valosin-containing protein p97. J Biol Chem 290:29414–29427.  https://doi.org/10.1074/jbc.m115.680686
  193. Tsuchiya H, Ohtake F, Arai N, Kaiho A, Yasuda S, Tanaka K, Saeki Y (2017) In vivo ubiquitin linkage-type analysis reveals that the Cdc48-Rad23/Dsk2 axis contributes to K48-linked chain specificity of the proteasome. Mol Cell 66:488–502 e 487.  https://doi.org/10.1016/j.molcel.2017.04.024
  194. Turakhiya A et al (2018) ZFAND1 recruits p97 and the 26S proteasome to promote the clearance of arsenite-induced stress granules. Mol Cell 70:906–919 e 907.  https://doi.org/10.1016/j.molcel.2018.04.021
  195. Twomey EC et al (2019) Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. Science.  https://doi.org/10.1126/science.aax1033
  196. Uchiyama K et al (2006) p37 is a p97 adaptor required for Golgi and ER biogenesis in interphase and at the end of mitosis. Dev Cell 11:803–816.  https://doi.org/10.1016/j.devcel.2006.10.016
  197. van den Boom J et al (2016) VCP/p97 extracts sterically trapped Ku70/80 rings from DNA in double-strand break repair. Mol Cell 64:189–198.  https://doi.org/10.1016/j.molcel.2016.08.037
  198. van den Boom J, Meyer H (2018) VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Mol Cell 69:182–194.  https://doi.org/10.1016/j.molcel.2017.10.028
  199. Vekaria PH, Home T, Weir S, Schoenen FJ, Rao R (2016) Targeting p97 to disrupt protein homeostasis in cancer. Front Oncol 6:181.  https://doi.org/10.3389/fonc.2016.00181
  200. Vekaria PH et al (2019) Functional cooperativity of p97 and histone deacetylase 6 in mediating DNA repair in mantle cell lymphoma cells. Leukemia 33:1675–1686.  https://doi.org/10.1038/s41375-018-0355-y
  201. Venne AS, Kollipara L, Zahedi RP (2014) The next level of complexity: crosstalk of posttranslational modifications. Proteomics 14:513–524.  https://doi.org/10.1002/pmic.201300344CrossRefPubMedGoogle Scholar
  202. Verbinnen I, Ferreira M, Bollen M (2017) Biogenesis and activity regulation of protein phosphatase 1. Biochem Soc Trans 45:89–99.  https://doi.org/10.1042/bst20160154
  203. Verma R, Oania RS, Kolawa NJ, Deshaies RJ (2013) Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. Elife 2:e00308.  https://doi.org/10.7554/elife.00308
  204. Wallington-Beddoe CT, Sobieraj-Teague M, Kuss BJ, Pitson SM (2018) Resistance to proteasome inhibitors and other targeted therapies in myeloma. Br J Haematol 182:11–28.  https://doi.org/10.1111/bjh.15210CrossRefPubMedGoogle Scholar
  205. Wang T et al (2016) Pathogenic mutations in the valosin-containing protein/p97(VCP) N-domain inhibit the SUMOylation of VCP and lead to impaired stress response. J Biol Chem 291:14373–14384.  https://doi.org/10.1074/jbc.m116.729343
  206. Wang Q, Liu Y, Soetandyo N, Baek K, Hegde R, Ye Y (2011) A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol Cell 42:758–770.  https://doi.org/10.1016/j.molcel.2011.05.010CrossRefPubMedPubMedCentralGoogle Scholar
  207. Wei Y, Toth JI, Blanco GA, Bobkov AA, Petroski MD (2018) Adapted ATPase domain communication overcomes the cytotoxicity of p97 inhibitors. J Biol Chem 293:20169–20180.  https://doi.org/10.1074/jbc.ra118.004301
  208. Weith M et al (2018) Ubiquitin-independent disassembly by a p97 AAA-ATPase complex drives PP1 holoenzyme formation. Mol Cell 72:766–777 e 766.  https://doi.org/10.1016/j.molcel.2018.09.020
  209. Wendler P, Ciniawsky S, Kock M, Kube S (2012) Structure and function of the AAA+ nucleotide binding pocket. Biochim Biophys Acta 1823:2–14.  https://doi.org/10.1016/j.bbamcr.2011.06.014
  210. Wertz IE, Wang X (2019) From discovery to bedside: targeting the ubiquitin system. Cell Chem Biol 26:156-177.  https://doi.org/10.1016/j.chembiol.2018.10.022
  211. White KI, Zhao M, Choi UB, Pfuetzner RA, Brunger AT (2018) Structural principles of SNARE complex recognition by the AAA+ protein NSF. Elife 7.  https://doi.org/10.7554/elife.38888
  212. Wu X, Rapoport TA (2018) Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol 53:22–28.  https://doi.org/10.1016/j.ceb.2018.04.004CrossRefPubMedPubMedCentralGoogle Scholar
  213. Xia D, Tang WK, Ye Y (2016) Structure and function of the AAA+ ATPase p97/Cdc48p. Gene 583:64–77.  https://doi.org/10.1016/j.gene.2016.02.042
  214. Xie F et al (2017) FAF1 phosphorylation by AKT accumulates TGF-beta type II receptor and drives breast cancer metastasis. Nat Commun 8:15021.  https://doi.org/10.1038/ncomms15021
  215. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873.  https://doi.org/10.1038/nbt.1654CrossRefPubMedPubMedCentralGoogle Scholar
  216. Xu S, Peng G, Wang Y, Fang S, Karbowski M (2011) The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol Biol Cell 22:291–300.  https://doi.org/10.1091/mbc.e10-09-0748
  217. Xu Y, Liu Y, Lee JG, Ye Y (2013) A ubiquitin-like domain recruits an oligomeric chaperone to a retrotranslocation complex in endoplasmic reticulum-associated degradation. J Biol Chem 288:18068–18076.  https://doi.org/10.1074/jbc.M112.449199CrossRefPubMedPubMedCentralGoogle Scholar
  218. Xue L et al (2016) Valosin-containing protein (VCP)-adaptor interactions are exceptionally dynamic and subject to differential modulation by a VCP inhibitor. Mol Cell Proteomics 15:2970–2986.  https://doi.org/10.1074/mcp.m116.061036
  219. Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18:579–586.  https://doi.org/10.1038/ncb3358CrossRefPubMedGoogle Scholar
  220. Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162:71–84.  https://doi.org/10.1083/jcb.200302169
  221. Ye Y, Tang WK, Zhang T, Xia D (2017) A mighty “protein extractor” of the cell: structure and function of the p97/CDC48 ATPase. Front Mol Biosci 4:39.  https://doi.org/10.3389/fmolb.2017.00039
  222. Ye Y, Baek SH, Ye Y, Zhang T (2018) Proteomic characterization of endogenous substrates of mammalian ubiquitin ligase Hrd1. Cell Biosci 8:46.  https://doi.org/10.1186/s13578-018-0245-z
  223. Yedidi RS, Wendler P, Enenkel C (2017) AAA-ATPases in protein degradation. Front Mol Biosci 4:42.  https://doi.org/10.3389/fmolb.2017.00042CrossRefPubMedPubMedCentralGoogle Scholar
  224. Zhang X et al (2015) Altered cofactor regulation with disease-associated p97/VCP mutations. Proc Natl Acad Sci U S A 112:1705–1714.  https://doi.org/10.1073/pnas.1418820112
  225. Zhang L, Gong F (2016) The emerging role of deubiquitination in nucleotide excision repair. DNA Repair (Amst) 44:118–122.  https://doi.org/10.1016/j.dnarep.2016.05.035CrossRefGoogle Scholar
  226. Zhao M, Brunger AT (2016) Recent advances in deciphering the structure and molecular mechanism of the AAA+ ATPase N-ethylmaleimide-sensitive factor (NSF). J Mol Biol 428:1912–1926.  https://doi.org/10.1016/j.jmb.2015.10.026
  227. Zhao G, Zhou X, Wang L, Li G, Schindelin H, Lennarz WJ (2007) Studies on peptide: N-glycanase-p97 interaction suggest that p97 phosphorylation modulates endoplasmic reticulum-associated degradation. Proc Natl Acad Sci U S A 104:8785–8790.  https://doi.org/10.1073/pnas.0702966104
  228. Zhao M, Wu S, Zhou Q, Vivona S, Cipriano DJ, Cheng Y, Brunger AT (2015) Mechanistic insights into the recycling machine of the SNARE complex. Nature 518:61–67.  https://doi.org/10.1038/nature14148CrossRefPubMedPubMedCentralGoogle Scholar
  229. Zhou HJ et al (2015) Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083). J Med Chem 58:9480–9497.  https://doi.org/10.1021/acs.jmedchem.5b01346

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Petra Hänzelmann
    • 1
    Email author
  • Carolina Galgenmüller
    • 1
  • Hermann Schindelin
    • 1
  1. 1.Rudolf Virchow Center for Experimental BiomedicineUniversity of WürzburgWürzburgGermany

Personalised recommendations