Advertisement

The Structures of Eukaryotic Transcription Pre-initiation Complexes and Their Functional Implications

  • Basil J. GreberEmail author
  • Eva Nogales
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 93)

Abstract

Transcription is a highly regulated process that supplies living cells with coding and non-coding RNA molecules. Failure to properly regulate transcription is associated with human pathologies, including cancers. RNA polymerase II is the enzyme complex that synthesizes messenger RNAs that are then translated into proteins. In spite of its complexity, RNA polymerase requires a plethora of general transcription factors to be recruited to the transcription start site as part of a large transcription pre-initiation complex, and to help it gain access to the transcribed strand of the DNA. This chapter reviews the structure and function of these eukaryotic transcription pre-initiation complexes, with a particular emphasis on two of its constituents, the multisubunit complexes TFIID and TFIIH. We also compare the overall architecture of the RNA polymerase II pre-initiation complex with those of RNA polymerases I and III, involved in transcription of ribosomal RNA and non-coding RNAs such as tRNAs and snRNAs, and discuss the general, conserved features that are applicable to all eukaryotic RNA polymerase systems.

Keywords

Transcription Initiation General transcription factors TFIIH TFIID RNA polymerase Gene expression Structural biology Cryo-electron microscopy 

Notes

Acknowledgements

Molecular depictions were created using UCSF Chimera (Pettersen et al. 2004) and PyMol (The PyMOL Molecular Graphics System, Version 1.8, Schrödinger, LLC.). This work was funded through NIGMS grant R35-GM127018 to E. N; B. J. G. was supported by the Swiss National Science Foundation (projects P300PA-160983 and P300PA-174355). E. N. is a Howard Hughes Medical Investigator.

References

  1. Abascal-Palacios G, Ramsay EP, Beuron F, Morris E, Vannini A (2018) Structural basis of RNA polymerase III transcription initiation. Nature 553:301–306CrossRefPubMedGoogle Scholar
  2. Abdulrahman W et al (2013) ARCH domain of XPD, an anchoring platform for CAK that conditions TFIIH DNA repair and transcription activities. Proc Natl Acad Sci USA 110:E633–642CrossRefPubMedGoogle Scholar
  3. Alekseev S, Nagy Z, Sandoz J, Weiss A, Egly J-M, Le May N, Coin F (2017) Transcription without XPB establishes a unified helicase-independent mechanism of promoter opening in eukaryotic gene expression. Mol Cell 65:504–513.e505CrossRefPubMedGoogle Scholar
  4. Anandapadamanaban M et al (2013) High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation. Nat Struct Mol Biol 20:1008–1014CrossRefPubMedPubMedCentralGoogle Scholar
  5. Andel F, Ladurner AG, Inouye C, Tjian R, Nogales E (1999) Three-dimensional structure of the human TFIID-IIA-IIB complex. Science 286:2153–2156CrossRefPubMedGoogle Scholar
  6. Andersen G et al (1997) The structure of cyclin H: common mode of kinase activation and specific features. EMBO J 16:958–967CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arimbasseri AG, Maraia RJ (2015) Mechanism of transcription termination by RNA polymerase III utilizes a non-template strand sequence-specific signal element. Mol Cell 58:1124–1132CrossRefPubMedPubMedCentralGoogle Scholar
  8. Asturias FJ, Jiang YW, Myers LC, Gustafsson CM, Kornberg RD (1999) Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283:985–987CrossRefPubMedGoogle Scholar
  9. Baek HJ, Malik S, Qin J, Roeder RG (2002) Requirement of TRAP/mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAF(II)s. Mol Cell Biol 22:2842–2852CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bancerek J et al (2013) CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38:250–262CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bardeleben C, Kassavetis GA, Geiduschek EP (1994) Encounters of Saccharomyces cerevisiae RNA polymerase III with its transcription factors during RNA chain elongation. J Mol Biol 235:1193–1205CrossRefPubMedGoogle Scholar
  12. Barnes CO et al (2015) Crystal structure of a transcribing RNA polymerase II complex reveals a complete transcription bubble. Mol Cell 59:258–269CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bedwell GJ, Appling FD, Anderson SJ, Schneider DA (2012) Efficient transcription by RNA polymerase I using recombinant core factor. Gene 492:94–99CrossRefPubMedGoogle Scholar
  14. Berico P, Coin F (2017) Is TFIIH the new Achilles heel of cancer cells? Transcription 9:47–51CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bieniossek C et al (2013) The architecture of human general transcription factor TFIID core complex. Nature 493:699–702CrossRefPubMedGoogle Scholar
  16. Bienstock RJ, Skorvaga M, Mandavilli BS, Van Houten B (2003) Structural and functional characterization of the human DNA repair helicase XPD by comparative molecular modeling and site-directed mutagenesis of the bacterial repair protein UvrB. J Biol Chem 278:5309–5316CrossRefPubMedGoogle Scholar
  17. Bier M, Fath S, Tschochner H (2004) The composition of the RNA polymerase I transcription machinery switches from initiation to elongation mode. FEBS Lett 564:41–46CrossRefPubMedGoogle Scholar
  18. Bleichenbacher M, Tan S, Richmond TJ (2003) Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J Mol Biol 332:783–793CrossRefPubMedGoogle Scholar
  19. Bordi L, Cioci F, Camilloni G (2001) In vivo binding and hierarchy of assembly of the yeast RNA polymerase I transcription factors. Mol Biol Cell 12:753–760CrossRefPubMedPubMedCentralGoogle Scholar
  20. Borggrefe T, Yue X (2011) Interactions between subunits of the Mediator complex with gene-specific transcription factors. Semin Cell Dev Biol 22:759–768CrossRefPubMedGoogle Scholar
  21. Borggrefe T, Davis R, Erdjument-Bromage H, Tempst P, Kornberg RD (2002) A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J Biol Chem 277:44202–44207CrossRefPubMedGoogle Scholar
  22. Botta E, Nardo T, Lehmann AR, Egly J-M, Pedrini AM, Stefanini M (2002) Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Hum Mol Genet 11:2919–2928CrossRefPubMedGoogle Scholar
  23. Brand M, Leurent C, Mallouh V, Tora L, Schultz P (1999) Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science 286:2151–2153CrossRefPubMedGoogle Scholar
  24. Brun I, Sentenac A, Werner M (1997) Dual role of the C34 subunit of RNA polymerase III in transcription initiation. EMBO J 16:5730–5741CrossRefPubMedPubMedCentralGoogle Scholar
  25. Brzovic PS et al (2011) The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol Cell 44:942–953CrossRefPubMedPubMedCentralGoogle Scholar
  26. Buechner CN, Heil K, Michels G, Carell T, Kisker C, Tessmer I (2014) Strand-specific recognition of DNA damages by XPD provides insights into nucleotide excision repair substrate versatility. J Biol Chem 289:3613–3624CrossRefPubMedGoogle Scholar
  27. Buratowski S, Hahn S, Guarente L, Sharp PA (1989) Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549–561CrossRefPubMedGoogle Scholar
  28. Burke TW, Kadonaga JT (1996) Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev 10:711–724CrossRefPubMedGoogle Scholar
  29. Burke TW, Kadonaga JT (1997) The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev 11:3020–3031CrossRefPubMedPubMedCentralGoogle Scholar
  30. Bushnell DA, Westover KD, Davis RE, Kornberg RD (2004) Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303:983–988CrossRefPubMedGoogle Scholar
  31. Busso D, Keriel A, Sandrock B, Poterszman A, Gileadi O, Egly JM (2000) Distinct regions of MAT1 regulate cdk7 kinase and TFIIH transcription activities. J Biol Chem 275:22815–22823CrossRefPubMedGoogle Scholar
  32. Cabarcas S, Schramm L (2011) RNA polymerase III transcription in cancer: the BRF2 connection. Mol Cancer 10:47CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cabart P, Murphy S (2001) BRFU, a TFIIB-like factor, is directly recruited to the TATA-box of polymerase III small nuclear RNA gene promoters through its interaction with TATA-binding protein. J Biol Chem 276:43056–43064CrossRefPubMedGoogle Scholar
  34. Cai G, Imasaki T, Takagi Y, Asturias FJ (2009) Mediator structural conservation and implications for the regulation mechanism. Structure 17:559–567CrossRefPubMedPubMedCentralGoogle Scholar
  35. Carninci P et al (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635CrossRefPubMedGoogle Scholar
  36. Chalkley GE, Verrijzer CP (1999) DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250-TAF(II)150 complex recognizes the initiator. EMBO J 18:4835–4845CrossRefPubMedPubMedCentralGoogle Scholar
  37. Chang WH, Kornberg RD (2000) Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell 102:609–613CrossRefPubMedGoogle Scholar
  38. Chen W, Struhl K (1985) Yeast mRNA initiation sites are determined primarily by specific sequences, not by the distance from the TATA element. EMBO J 4:3273–3280CrossRefPubMedPubMedCentralGoogle Scholar
  39. Chen X, Farmer G, Zhu H, Prywes R, Prives C (1993) Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev 7:1837–1849CrossRefPubMedGoogle Scholar
  40. Chen JL, Attardi LD, Verrijzer CP, Yokomori K, Tjian R (1994) Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79:93–105CrossRefPubMedGoogle Scholar
  41. Cheung ACM, Cramer P (2011) Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 471:249–253CrossRefPubMedGoogle Scholar
  42. Cianfrocco MA, Kassavetis GA, Grob P, Fang J, Juven-Gershon T, Kadonaga JT, Nogales E (2013) Human TFIID binds to core promoter DNA in a reorganized structural state. Cell 152:120–131CrossRefPubMedPubMedCentralGoogle Scholar
  43. Cleaver JE, Thompson LH, Richardson AS, States JC (1999) A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Hum Mutat 14:9–22CrossRefPubMedGoogle Scholar
  44. Coin F, Marinoni JC, Rodolfo C, Fribourg S, Pedrini AM, Egly JM (1998) Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet 20:184–188CrossRefPubMedGoogle Scholar
  45. Coin F, Oksenych V, Egly J-M (2007) Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol Cell 26:245–256CrossRefPubMedGoogle Scholar
  46. Colbert T, Hahn S (1992) A yeast TFIIB-related factor involved in RNA polymerase III transcription. Genes Dev 6:1940–1949CrossRefPubMedGoogle Scholar
  47. Comai L, Tanese N, Tjian R (1992) The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68:965–976CrossRefPubMedGoogle Scholar
  48. Compe E, Egly J-M (2012) TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol 13:343–354CrossRefPubMedGoogle Scholar
  49. Conesa C, Swanson RN, Schultz P, Oudet P, Sentenac A (1993) On the subunit composition, stoichiometry, and phosphorylation of the yeast transcription factor TFIIIC/tau. J Biol Chem 268:18047–18052PubMedGoogle Scholar
  50. Cramer P et al (2000) Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288:640–649CrossRefPubMedGoogle Scholar
  51. Cramer P, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292:1863–1876CrossRefPubMedGoogle Scholar
  52. Davis JA, Takagi Y, Kornberg RD, Asturias FA (2002) Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction. Mol Cell 10:409–415CrossRefPubMedGoogle Scholar
  53. Deng W, Roberts SGE (2005) A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes Dev 19:2418–2423CrossRefPubMedPubMedCentralGoogle Scholar
  54. Denissov S et al (2007) Identification of novel functional TBP-binding sites and general factor repertoires. EMBO J 26:944–954CrossRefPubMedPubMedCentralGoogle Scholar
  55. Devault A et al (1995) MAT1 (‘menage à trois’) a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO J 14:5027–5036CrossRefPubMedPubMedCentralGoogle Scholar
  56. Dieci G, Sentenac A (1996) Facilitated recycling pathway for RNA polymerase III. Cell 84:245–252CrossRefPubMedGoogle Scholar
  57. Dieci G, Bosio MC, Fermi B, Ferrari R (2013) Transcription reinitiation by RNA polymerase III. Biochim Biophys Acta 1829:331–341CrossRefPubMedGoogle Scholar
  58. Dienemann C, Schwalb B, Schilbach S, Cramer P (2018) Promoter distortion and opening in the RNA polymerase II cleft. Mol Cell 73:97–106.e4Google Scholar
  59. Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM (2010) CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 17:194–201CrossRefPubMedPubMedCentralGoogle Scholar
  60. Dotson MR et al (2000) Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci USA 97:14307–14310CrossRefPubMedGoogle Scholar
  61. Drapkin R, Reardon JT, Ansari A, Huang J-C, Zawel L, Ahn KJ, Sancar A, Reinberg D (1994) Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368:769–772Google Scholar
  62. Dubaele S, Proietti De Santis L, Bienstock RJ, Keriel A, Stefanini M, Van Houten B, Egly J-M (2003) Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell 11:1635–1646CrossRefPubMedGoogle Scholar
  63. Dubrovskaya V, Lavigne AC, Davidson I, Acker J, Staub A, Tora L (1996) Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIF beta (RAP30) and incorporation into the TFIID complex. EMBO J 15:3702–3712CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ducrot C, Lefebvre O, Landrieux E, Guirouilh-Barbat J, Sentenac A, Acker J (2006) Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors. J Biol Chem 281:11685–11692CrossRefPubMedGoogle Scholar
  65. Ehara H, Yokoyama T, Shigematsu H, Yokoyama S, Shirouzu M, Sekine S-I (2017) Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357:921–924CrossRefPubMedGoogle Scholar
  66. Elmlund H et al (2009) Cryo-EM reveals promoter DNA binding and conformational flexibility of the general transcription factor TFIID. Structure 17:1442–1452CrossRefPubMedGoogle Scholar
  67. Engel C, Sainsbury S, Cheung AC, Kostrewa D, Cramer P (2013) RNA polymerase I structure and transcription regulation. Nature 502:650–655CrossRefPubMedGoogle Scholar
  68. Engel C, Plitzko J, Cramer P (2016) RNA polymerase I-Rrn3 complex at 4.8 Å resolution. Nat Commun 7:12129Google Scholar
  69. Engel C et al (2017) Structural basis of RNA polymerase I transcription initiation. Cell 169:120–131.e22CrossRefPubMedGoogle Scholar
  70. Engel C, Neyer S, Cramer P (2018) Distinct mechanisms of transcription initiation by RNA polymerases I and II. Annu Rev Biophys 47:425–446CrossRefPubMedGoogle Scholar
  71. Fan L, Arvai AS, Cooper PK, Iwai S, Hanaoka F, Tainer JA (2006) Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell 22:27–37CrossRefPubMedGoogle Scholar
  72. Fan L et al (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133:789–800CrossRefPubMedPubMedCentralGoogle Scholar
  73. Fernández-Tornero C et al (2013) Crystal structure of the 14-subunit RNA polymerase I. Nature 502:644–649CrossRefPubMedGoogle Scholar
  74. Firestein R et al (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 455:547–551CrossRefPubMedPubMedCentralGoogle Scholar
  75. Fishburn J, Tomko E, Galburt E, Hahn S (2015) Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. Proc Natl Acad Sci USA 112:3961–3966CrossRefPubMedGoogle Scholar
  76. Fisher RP (2018) Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription 10:47–56Google Scholar
  77. Fisher RP, Morgan DO (1994) A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78:713–724CrossRefPubMedGoogle Scholar
  78. Fisher RP, Jin P, Chamberlin HM, Morgan DO (1995) Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83:47–57CrossRefPubMedGoogle Scholar
  79. Flanagan PM, Kelleher RJ, Sayre MH, Tschochner H, Kornberg RD (1991) A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350:436–438CrossRefPubMedGoogle Scholar
  80. Friedrich JK, Panov KI, Cabart P, Russell J, Zomerdijk JCBM (2005) TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter. J Biol Chem 280:29551–29558CrossRefPubMedGoogle Scholar
  81. Gannon F et al (1979) Organisation and sequences at the 5′ end of a cloned complete ovalbumin gene. Nature 278:428–434CrossRefPubMedGoogle Scholar
  82. Gegonne A, Weissman JD, Zhou M, Brady JN, Singer DS (2006) TAF7: a possible transcription initiation check-point regulator. Proc Natl Acad Sci USA 103:602–607CrossRefPubMedGoogle Scholar
  83. Gervais V et al (2018) Small molecule-based targeting of TTD-A dimerization to control TFIIH transcriptional activity represents a potential strategy for anticancer therapy. J Biol Chem 293:14974–14988CrossRefPubMedPubMedCentralGoogle Scholar
  84. Ghazy MA, Brodie SA, Ammerman ML, Ziegler LM, Ponticelli AS (2004) Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II. Mol Cell Biol 24:10975–10985CrossRefPubMedPubMedCentralGoogle Scholar
  85. Gibbons BJ et al (2012) Subunit architecture of general transcription factor TFIIH. Proc Natl Acad Sci USA 109:1949–1954CrossRefPubMedGoogle Scholar
  86. Giglia-Mari G et al (2004) A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 36:714–719CrossRefPubMedGoogle Scholar
  87. Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292:1876–1882CrossRefPubMedGoogle Scholar
  88. Gorski JJ, Pathak S, Panov K, Kasciukovic T, Panova T, Russell J, Zomerdijk JCBM (2007) A novel TBP-associated factor of SL1 functions in RNA polymerase I transcription. EMBO J 26:1560–1568CrossRefPubMedPubMedCentralGoogle Scholar
  89. Gouge J et al (2015) Redox signaling by the RNA polymerase III TFIIB-related factor Brf2. Cell 163:1375–1387CrossRefPubMedPubMedCentralGoogle Scholar
  90. Gouge J et al (2017) Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation. Nat Commun 8:130CrossRefPubMedPubMedCentralGoogle Scholar
  91. Greber BJ, Nguyen THD, Fang J, Afonine PV, Adams PD, Nogales E (2017) The cryo-electron microscopy structure of human transcription factor IIH. Nature 549:414–417CrossRefPubMedPubMedCentralGoogle Scholar
  92. Greber BJ, Toso D, Fang J, Nogales E (2019) The complete structure of the human TFIIH core complex. eLife 8:e44771Google Scholar
  93. Grob P, Cruse MJ, Inouye C, Peris M, Penczek PA, Tjian R, Nogales E (2006) Cryo-electron microscopy studies of human TFIID: conformational breathing in the integration of gene regulatory cues. Structure 14:511–520CrossRefPubMedGoogle Scholar
  94. Grünberg S, Warfield L, Hahn S (2012) Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nat Struct Mol Biol 19:788–796CrossRefPubMedPubMedCentralGoogle Scholar
  95. Guzder SN, Sung P, Bailly V, Prakash L, Prakash S (1994) RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. Nature 369:578–581CrossRefPubMedGoogle Scholar
  96. Han Y, Yan C, Nguyen THD, Jackobel AJ, Ivanov I, Knutson BA, He Y (2017) Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. Elife 6:e27414Google Scholar
  97. Han Y, Yan C, Fishbain S, Ivanov I, He Y (2018) Structural visualization of RNA polymerase III transcription machineries. Cell Discov 4:40CrossRefPubMedPubMedCentralGoogle Scholar
  98. He Y, Fang J, Taatjes DJ, Nogales E (2013) Structural visualization of key steps in human transcription initiation. Nature 495:481–486CrossRefPubMedPubMedCentralGoogle Scholar
  99. He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E (2016) Near-atomic resolution visualization of human transcription promoter opening. Nature 533:359–365CrossRefPubMedPubMedCentralGoogle Scholar
  100. Henry RW, Sadowski CL, Kobayashi R, Hernandez N (1995) A TBP-TAF complex required for transcription of human snRNA genes by RNA polymerase II and III. Nature 374:653–656CrossRefPubMedGoogle Scholar
  101. Herrera-Moyano E, Moriel-Carretero M, Montelone BA, Aguilera A (2014) The rem mutations in the ATP-binding groove of the Rad3/XPD helicase lead to Xeroderma pigmentosum-Cockayne syndrome-like phenotypes. PLoS Genet 10:e1004859CrossRefPubMedPubMedCentralGoogle Scholar
  102. Hoffmann A, Chiang CM, Oelgeschläger T, Xie X, Burley SK, Nakatani Y, Roeder RG (1996) A histone octamer-like structure within TFIID. Nature 380:356–359CrossRefPubMedGoogle Scholar
  103. Hoffmann NA et al (2015) Molecular structures of unbound and transcribing RNA polymerase III. Nature 528:231–236CrossRefPubMedPubMedCentralGoogle Scholar
  104. Hontz RD, French SL, Oakes ML, Tongaonkar P, Nomura M, Beyer AL, Smith JS (2008) Transcription of multiple yeast ribosomal DNA genes requires targeting of UAF to the promoter by Uaf30. Mol Cell Biol 28:6709–6719CrossRefPubMedPubMedCentralGoogle Scholar
  105. Horikoshi M, Carey MF, Kakidani H, Roeder RG (1988) Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions. Cell 54:665–669CrossRefPubMedGoogle Scholar
  106. Iben JR, Mazeika JK, Hasson S, Rijal K, Arimbasseri AG, Russo AN, Maraia RJ (2011) Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III. Nucleic Acids Res 39:6100–6113CrossRefPubMedPubMedCentralGoogle Scholar
  107. Imasaki T et al (2011) Architecture of the Mediator head module. Nature 475:240–243CrossRefPubMedPubMedCentralGoogle Scholar
  108. Ishiguro A, Kassavetis GA, Geiduschek EP (2002) Essential roles of Bdp1, a subunit of RNA polymerase III initiation factor TFIIIB, in transcription and tRNA processing. Mol Cell Biol 22:3264–3275CrossRefPubMedPubMedCentralGoogle Scholar
  109. Izban MG, Luse DS (1992) The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′–5′ direction in the presence of elongation factor SII. Genes Dev 6:1342–1356CrossRefPubMedGoogle Scholar
  110. Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288:1422–1425CrossRefPubMedGoogle Scholar
  111. Jawhari A et al (2002) p52 Mediates XPB function within the transcription/repair factor TFIIH. J Biol Chem 277:31761–31767CrossRefPubMedGoogle Scholar
  112. Jeronimo C, Langelier M-F, Bataille AR, Pascal JM, Pugh BF, Robert F (2016) Tail and kinase modules differently regulate core mediator recruitment and function in vivo. Mol Cell 64:455–466CrossRefPubMedPubMedCentralGoogle Scholar
  113. Jiang Y, Gralla JD (1993) Uncoupling of initiation and reinitiation rates during HeLa RNA polymerase II transcription in vitro. Mol Cell Biol 13:4572–4577CrossRefPubMedPubMedCentralGoogle Scholar
  114. Johnson SAS, Dubeau L, Johnson DL (2008) Enhanced RNA polymerase III-dependent transcription is required for oncogenic transformation. J Biol Chem 283:19184–19191CrossRefPubMedPubMedCentralGoogle Scholar
  115. Joo YJ, Ficarro SB, Soares LM, Chun Y, Marto JA, Buratowski S (2017) Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Genes Dev 31:2162–2174CrossRefPubMedPubMedCentralGoogle Scholar
  116. Juo ZS, Kassavetis GA, Wang J, Geiduschek EP, Sigler PB (2003) Crystal structure of a transcription factor IIIB core interface ternary complex. Nature 422:534–539CrossRefPubMedGoogle Scholar
  117. Juven-Gershon T, Kadonaga JT (2010) Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol 339:225–229CrossRefPubMedGoogle Scholar
  118. Juven-Gershon T, Cheng S, Kadonaga JT (2006) Rational design of a super core promoter that enhances gene expression. Nat Meth 3:917–922CrossRefGoogle Scholar
  119. Kainov DE, Vitorino M, Cavarelli J, Poterszman A, Egly J-M (2008) Structural basis for group A trichothiodystrophy. Nat Struct Mol Biol 15:980–984CrossRefPubMedGoogle Scholar
  120. Kaplan CD (2013) Basic mechanisms of RNA polymerase II activity and alteration of gene expression in Saccharomyces cerevisiae. Biochim Biophys Acta 1829:39–54CrossRefPubMedGoogle Scholar
  121. Kassavetis GA, Braun BR, Nguyen LH, Geiduschek EP (1990) S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60:235–245CrossRefPubMedGoogle Scholar
  122. Kassavetis GA, Nguyen ST, Kobayashi R, Kumar A, Geiduschek EP, Pisano M (1995) Cloning, expression, and function of TFC5, the gene encoding the B″ component of the Saccharomyces cerevisiae RNA polymerase III transcription factor TFIIIB. Proc Natl Acad Sci USA 92:9786–9790CrossRefPubMedGoogle Scholar
  123. Kassavetis GA, Letts GA, Geiduschek EP (1999) A minimal RNA polymerase III transcription system. EMBO J 18:5042–5051CrossRefPubMedPubMedCentralGoogle Scholar
  124. Kassavetis GA, Letts GA, Geiduschek EP (2001) The RNA polymerase III transcription initiation factor TFIIIB participates in two steps of promoter opening. EMBO J 20:2823–2834CrossRefPubMedPubMedCentralGoogle Scholar
  125. Kassavetis GA, Soragni E, Driscoll R, Geiduschek EP (2005) Reconfiguring the connectivity of a multiprotein complex: fusions of yeast TATA-binding protein with Brf1, and the function of transcription factor IIIB. Proc Natl Acad Sci USA 102:15406–15411CrossRefPubMedGoogle Scholar
  126. Kassavetis GA, Prakash P, Shim E (2010) The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J Biol Chem 285:2695–2706CrossRefPubMedGoogle Scholar
  127. Keener J, Josaitis CA, Dodd JA, Nomura M (1998) Reconstitution of yeast RNA polymerase I transcription in vitro from purified components. TATA-binding protein is not required for basal transcription. J Biol Chem 273:33795–33802CrossRefPubMedGoogle Scholar
  128. Kettenberger H, Armache K-J, Cramer P (2003) Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114:347–357CrossRefPubMedGoogle Scholar
  129. Keys DA, Vu L, Steffan JS, Dodd JA, Yamamoto RT, Nogi Y, Nomura M (1994) RRN6 and RRN7 encode subunits of a multiprotein complex essential for the initiation of rDNA transcription by RNA polymerase I in Saccharomyces cerevisiae. Genes Dev 8:2349–2362CrossRefPubMedGoogle Scholar
  130. Keys DA et al (1996) Multiprotein transcription factor UAF interacts with the upstream element of the yeast RNA polymerase I promoter and forms a stable preinitiation complex. Genes Dev 10:887–903CrossRefPubMedGoogle Scholar
  131. Khatter H, Vorländer MK, Müller CW (2017) RNA polymerase I and III: similar yet unique. Cur Opin Struct Biol 47:88–94CrossRefGoogle Scholar
  132. Khoo B, Brophy B, Jackson SP (1994) Conserved functional domains of the RNA polymerase III general transcription factor BRF. Genes Dev 8:2879–2890CrossRefPubMedGoogle Scholar
  133. Khoo S-K, Wu C-C, Lin Y-C, Lee J-C, Chen H-T (2014) Mapping the protein interaction network for TFIIB-related factor Brf1 in the RNA polymerase III preinitiation complex. Mol Cell Biol 34:551–559CrossRefPubMedPubMedCentralGoogle Scholar
  134. Khoo S-K, Wu C-C, Lin Y-C, Chen H-T (2018) The TFIIE-related Rpc82 subunit of RNA polymerase III interacts with the TFIIB-related transcription factor Brf1 and the polymerase cleft for transcription initiation. Nucleic Acids Res 46:1157–1166CrossRefPubMedGoogle Scholar
  135. Killeen MT, Greenblatt JF (1992) The general transcription factor RAP30 binds to RNA polymerase II and prevents it from binding nonspecifically to DNA. Mol Cell Biol 12:30–37CrossRefPubMedPubMedCentralGoogle Scholar
  136. Kim YJ, Björklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608CrossRefPubMedGoogle Scholar
  137. Kim KK, Chamberlin HM, Morgan DO, Kim SH (1996) Three-dimensional structure of human cyclin H, a positive regulator of the CDK-activating kinase. Nat Struct Biol 3:849–855CrossRefPubMedGoogle Scholar
  138. Kim TK, Ebright RH, Reinberg D (2000) Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288:1418–1422CrossRefPubMedGoogle Scholar
  139. Kim JS, Saint-André C, Lim HS, Hwang C-S, Egly J-M, Cho Y (2015) Crystal structure of the Rad3/XPD regulatory domain of Ssl1/p44. J Biol Chem 290:8321–8330CrossRefPubMedPubMedCentralGoogle Scholar
  140. Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ (2009) The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 23:439–451CrossRefPubMedPubMedCentralGoogle Scholar
  141. Knutson BA, Hahn S (2011) Yeast Rrn7 and human TAF1B are TFIIB-related RNA polymerase I general transcription factors. Science 333:1637–1640CrossRefPubMedPubMedCentralGoogle Scholar
  142. Koch SC, Simon N, Ebert C, Carell T (2016) Molecular mechanisms of xeroderma pigmentosum (XP) proteins. Q Rev Biophys 49:e5CrossRefPubMedGoogle Scholar
  143. Kokubo T, Gong DW, Yamashita S, Horikoshi M, Roeder RG, Nakatani Y (1993) Drosophila 230-kD TFIID subunit, a functional homolog of the human cell cycle gene product, negatively regulates DNA binding of the TATA box-binding subunit of TFIID. Genes Dev 7:1033–1046CrossRefPubMedGoogle Scholar
  144. Kokubo T, Yamashita S, Horikoshi M, Roeder RG, Nakatani Y (1994) Interaction between the N-terminal domain of the 230-kDa subunit and the TATA box-binding subunit of TFIID negatively regulates TATA-box binding. Proc Natl Acad Sci USA 91:3520–3524CrossRefPubMedGoogle Scholar
  145. Kolesnikova O, Ben-Shem A, Luo J, Ranish J, Schultz P, Papai G (2018) Molecular structure of promoter-bound yeast TFIID. Nat Commun 9:4666CrossRefPubMedPubMedCentralGoogle Scholar
  146. Korkhin Y et al (2009) Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. PLoS Biol 7:e1000102–1000110CrossRefPubMedPubMedCentralGoogle Scholar
  147. Kostrewa D, Zeller ME, Armache K-J, Seizl M, Leike K, Thomm M, Cramer P (2009) RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 462:323–330CrossRefPubMedGoogle Scholar
  148. Kuper J et al (2014) In TFIIH, XPD helicase is exclusively devoted to DNA repair. PLoS Biol 12:e1001954CrossRefPubMedPubMedCentralGoogle Scholar
  149. Kutach AK, Kadonaga JT (2000) The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol 20:4754–4764CrossRefPubMedPubMedCentralGoogle Scholar
  150. Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH (1998) New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12:34–44CrossRefPubMedPubMedCentralGoogle Scholar
  151. Lalo D, Steffan JS, Dodd JA, Nomura M (1996) RRN11 encodes the third subunit of the complex containing Rrn6p and Rrn7p that is essential for the initiation of rDNA transcription by yeast RNA polymerase I. J Biol Chem 271:21062–21067CrossRefPubMedGoogle Scholar
  152. Landrieux E, Alic N, Ducrot C, Acker J, Riva M, Carles C (2006) A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J 25:118–128CrossRefPubMedGoogle Scholar
  153. Lariviere L, Plaschka C, Seizl M, Wenzeck L, Kurth F, Cramer P (2012a) Structure of the Mediator head module. Nature 492:448–451CrossRefPubMedGoogle Scholar
  154. Lariviere L, Seizl M, Cramer P (2012b) A structural perspective on Mediator function. Curr Opin Cell Biol 24:305–313CrossRefPubMedGoogle Scholar
  155. Lariviere L, Plaschka C, Seizl M, Petrotchenko EV, Wenzeck L, Borchers CH, Cramer P (2013) Model of the Mediator middle module based on protein cross-linking. Nucleic Acids Res 41:9266–9273CrossRefPubMedPubMedCentralGoogle Scholar
  156. Learned RM, Cordes S, Tjian R (1985) Purification and characterization of a transcription factor that confers promoter specificity to human RNA polymerase I. Mol Cell Biol 5:1358–1369CrossRefPubMedPubMedCentralGoogle Scholar
  157. Lee YC, Park JM, Min S, Han SJ, Kim YJ (1999) An activator binding module of yeast RNA polymerase II holoenzyme. Mol Cell Biol 19:2967–2976CrossRefPubMedPubMedCentralGoogle Scholar
  158. Lee D-H, Gershenzon N, Gupta M, Ioshikhes IP, Reinberg D, Lewis BA (2005) Functional characterization of core promoter elements: the downstream core element is recognized by TAF1. Mol Cell Biol 25:9674–9686CrossRefPubMedPubMedCentralGoogle Scholar
  159. Lenhard B, Sandelin A, Carninci P (2012) Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 13:233–245CrossRefPubMedGoogle Scholar
  160. Leurent C et al (2002) Mapping histone fold TAFs within yeast TFIID. EMBO J 21:3424–3433CrossRefPubMedPubMedCentralGoogle Scholar
  161. Li C-L, Golebiowski FM, Onishi Y, Samara NL, Sugasawa K, Yang W (2015) Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol Cell 59:1025–1034CrossRefPubMedPubMedCentralGoogle Scholar
  162. Lim CY, Santoso B, Boulay T, Dong E, Ohler U, Kadonaga JT (2004) The MTE, a new core promoter element for transcription by RNA polymerase II. Genes Dev 18:1606–1617CrossRefPubMedPubMedCentralGoogle Scholar
  163. Lin CW, Moorefield B, Payne J, Aprikian P, Mitomo K, Reeder RH (1996) A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein to promote polymerase I transcription initiation in Saccharomyces cerevisiae. Mol Cell Biol 16:6436–6443CrossRefPubMedPubMedCentralGoogle Scholar
  164. Liu H et al (2008) Structure of the DNA repair helicase XPD. Cell 133:801–812CrossRefPubMedPubMedCentralGoogle Scholar
  165. Liu X, Bushnell DA, Wang D, Calero G, Kornberg RD (2010) Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism. Science 327:206–209CrossRefPubMedGoogle Scholar
  166. Lobo SM, Tanaka M, Sullivan ML, Hernandez N (1992) A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction. Cell 71:1029–1040CrossRefPubMedGoogle Scholar
  167. Lockwood WW et al (2010) Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma. PLoS Med 7:e1000315CrossRefPubMedPubMedCentralGoogle Scholar
  168. Lolli G, Lowe ED, Brown NR, Johnson LN (2004) The crystal structure of human CDK7 and its protein recognition properties. Structure 12:2067–2079CrossRefPubMedGoogle Scholar
  169. López-De-León A, Librizzi M, Puglia K, Willis IM (1992) PCF4 encodes an RNA polymerase III transcription factor with homology to TFIIB. Cell 71:211–220CrossRefPubMedGoogle Scholar
  170. Louder RK, He Y, López-Blanco JR, Fang J, Chacón P, Nogales E (2016) Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 531:604–609CrossRefPubMedPubMedCentralGoogle Scholar
  171. Luo J et al (2015) Architecture of the human and yeast general transcription and DNA repair factor TFIIH. Mol Cell 59:794–806CrossRefPubMedPubMedCentralGoogle Scholar
  172. Male G et al (2015) Architecture of TFIIIC and its role in RNA polymerase III pre-initiation complex assembly. Nat Commun 6:7387CrossRefPubMedPubMedCentralGoogle Scholar
  173. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JHJ (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15:465–481CrossRefPubMedGoogle Scholar
  174. Mathieu N, Kaczmarek N, Rüthemann P, Luch A, Naegeli H (2013) DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr Biol 23:204–212CrossRefPubMedGoogle Scholar
  175. Maxon ME, Goodrich JA, Tjian R (1994) Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev 8:515–524CrossRefPubMedGoogle Scholar
  176. Milkereit P, Tschochner H (1998) A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J 17:3692–3703CrossRefPubMedPubMedCentralGoogle Scholar
  177. Milkereit P, Schultz P, Tschochner H (1997) Resolution of RNA polymerase I into dimers and monomers and their function in transcription. Biol Chem 378:1433–1443CrossRefPubMedGoogle Scholar
  178. Mital R, Kobayashi R, Hernandez N (1996) RNA polymerase III transcription from the human U6 and adenovirus type 2 VAI promoters has different requirements for human BRF, a subunit of human TFIIIB. Mol Cell Biol 16:7031–7042CrossRefPubMedPubMedCentralGoogle Scholar
  179. Monté D et al (2018) Crystal structure of human Mediator subunit MED23. Nat Commun 9:3389CrossRefPubMedPubMedCentralGoogle Scholar
  180. Moriel-Carretero M, Herrera-Moyano E, Aguilera A (2015) A unified model for the molecular basis of Xeroderma pigmentosum-Cockayne Syndrome. Rare Dis 3:e1079362CrossRefPubMedPubMedCentralGoogle Scholar
  181. Murakami K et al (2013) Architecture of an RNA polymerase II transcription pre-initiation complex. Science 342:1238724CrossRefPubMedPubMedCentralGoogle Scholar
  182. Murakami K, Tsai K-L, Kalisman N, Bushnell DA, Asturias FJ, Kornberg RD (2015) Structure of an RNA polymerase II preinitiation complex. Proc Natl Acad Sci USA 112:13543–13548CrossRefPubMedGoogle Scholar
  183. Naegeli H, Bardwell L, Friedberg EC (1993) Inhibition of Rad3 DNA helicase activity by DNA adducts and abasic sites: implications for the role of a DNA helicase in damage-specific incision of DNA. Biochemistry 32:613–621CrossRefPubMedGoogle Scholar
  184. Naidu S, Friedrich JK, Russell J, Zomerdijk JCBM (2011) TAF1B is a TFIIB-like component of the basal transcription machinery for RNA polymerase I. Science 333:1640–1642CrossRefPubMedPubMedCentralGoogle Scholar
  185. Natarajan K, Jackson BM, Zhou H, Winston F, Hinnebusch AG (1999) Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol Cell 4:657–664CrossRefPubMedGoogle Scholar
  186. Neyer S et al (2016) Structure of RNA polymerase I transcribing ribosomal DNA genes. Nature 540:607–610CrossRefPubMedGoogle Scholar
  187. Nikolov DB et al (1992) Crystal structure of TFIID TATA-box binding protein. Nature 360:40–46CrossRefPubMedGoogle Scholar
  188. Nikolov DB et al (1995) Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377:119–128CrossRefPubMedGoogle Scholar
  189. Nikolov DB, Chen H, Halay ED, Hoffman A, Roeder RG, Burley SK (1996) Crystal structure of a human TATA box-binding protein/TATA element complex. Proc Natl Acad Sci USA 93:4862–4867CrossRefPubMedGoogle Scholar
  190. Nogales E, Fang J, Louder RK (2017a) Structural dynamics and DNA interaction of human TFIID. Transcription 8:55–60CrossRefPubMedGoogle Scholar
  191. Nogales E, Louder RK, He Y (2017b) Structural insights into the eukaryotic transcription initiation machinery. Annu Rev Biophys 46:59–83CrossRefPubMedPubMedCentralGoogle Scholar
  192. Nogales E, Patel AB, Louder RK (2017c) Towards a mechanistic understanding of core promoter recognition from cryo-EM studies of human TFIID. Curr Opin Struct Biol 47:60–66CrossRefPubMedPubMedCentralGoogle Scholar
  193. Nozawa K, Schneider TR, Cramer P (2017) Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nature 545:248–251CrossRefPubMedGoogle Scholar
  194. Ohkuma Y, Roeder RG (1994) Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation. Nature 368:160–163Google Scholar
  195. Okuda M, Tanaka A, Satoh M, Mizuta S, Takazawa M, Ohkuma Y, Nishimura Y (2008) Structural insight into the TFIIE-TFIIH interaction: TFIIE and p53 share the binding region on TFIIH. EMBO J 27:1161–1171CrossRefPubMedPubMedCentralGoogle Scholar
  196. Papai G, Tripathi MK, Ruhlmann C, Werten S, Crucifix C, Weil PA, Schultz P (2009) Mapping the initiator binding Taf2 subunit in the structure of hydrated yeast TFIID. Structure 17:363–373CrossRefPubMedPubMedCentralGoogle Scholar
  197. Patel AB et al (2018) Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science 362(6421):eaau8872CrossRefPubMedPubMedCentralGoogle Scholar
  198. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  199. Pilsl M et al (2016) Structure of the initiation-competent RNA polymerase I and its implication for transcription. Nat Commun 7:12126CrossRefPubMedPubMedCentralGoogle Scholar
  200. Plaschka C et al (2015) Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 518:376–380CrossRefPubMedGoogle Scholar
  201. Plaschka C, Hantsche M, Dienemann C, Burzinski C, Plitzko J, Cramer P (2016) Transcription initiation complex structures elucidate DNA opening. Nature 533:353–358CrossRefPubMedGoogle Scholar
  202. Pugh BF, Tjian R (1990) Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61:1187–1197CrossRefPubMedGoogle Scholar
  203. Pugh BF, Tjian R (1991) Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev 5:1935–1945CrossRefPubMedGoogle Scholar
  204. Rani PG, Ranish JA, Hahn S (2004) RNA polymerase II (Pol II)-TFIIF and Pol II-mediator complexes: the major stable Pol II complexes and their activity in transcription initiation and reinitiation. Mol Cell Biol 24:1709–1720CrossRefPubMedPubMedCentralGoogle Scholar
  205. Rapin I (2013) Disorders of nucleotide excision repair. Handb Clin Neurol 113:1637–1650CrossRefPubMedGoogle Scholar
  206. Reines D (1992) Elongation factor-dependent transcript shortening by template-engaged RNA polymerase II. J Biol Chem 267:3795–3800PubMedPubMedCentralGoogle Scholar
  207. Rijal K, Maraia RJ (2013) RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output. Nucleic Acids Res 41:139–155CrossRefPubMedGoogle Scholar
  208. Roberts S, Colbert T, Hahn S (1995) TFIIIC determines RNA polymerase III specificity at the TATA-containing yeast U6 promoter. Genes Dev 9:832–842CrossRefPubMedGoogle Scholar
  209. Robinson PJJ, Bushnell DA, Trnka MJ, Burlingame AL, Kornberg RD (2012) Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II. Proc Natl Acad Sci USA 109:17931–17935CrossRefPubMedGoogle Scholar
  210. Robinson PJ et al (2015) Molecular architecture of the yeast Mediator complex. Elife 4:e08719CrossRefPubMedPubMedCentralGoogle Scholar
  211. Robinson PJ, Trnka MJ, Bushnell DA, Davis RE, Mattei P-J, Burlingame AL, Kornberg RD (2016) Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell 166:1411–1422.e1416CrossRefPubMedPubMedCentralGoogle Scholar
  212. Roeder RG (1996) The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21:327–335CrossRefPubMedGoogle Scholar
  213. Roeder RG, Rutter WJ (1969) Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224:234–237CrossRefPubMedGoogle Scholar
  214. Roeder RG, Rutter WJ (1970) Specific nucleolar and nucleoplasmic RNA polymerases. Proc Natl Acad Sci USA 65:675–682CrossRefPubMedGoogle Scholar
  215. Rossignol M, Kolb-Cheynel I, Egly JM (1997) Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J 16:1628–1637CrossRefPubMedPubMedCentralGoogle Scholar
  216. Roy AL, Singer DS (2015) Core promoters in transcription: old problem, new insights. Trends Biochem Sci 40:165–171CrossRefPubMedPubMedCentralGoogle Scholar
  217. Roy K, Gabunilas J, Gillespie A, Ngo D, Chanfreau GF (2016) Common genomic elements promote transcriptional and DNA replication roadblocks. Genome Res 26:1363–1375CrossRefPubMedPubMedCentralGoogle Scholar
  218. Ruan W, Lehmann E, Thomm M, Kostrewa D, Cramer P (2011) Evolution of two modes of intrinsic RNA polymerase transcript cleavage. J Biol Chem 286:18701–18707CrossRefPubMedPubMedCentralGoogle Scholar
  219. Ruppert S, Tjian R (1995) Human TAFII250 interacts with RAP74: implications for RNA polymerase II initiation. Genes Dev 9:2747–2755CrossRefPubMedGoogle Scholar
  220. Sadian Y et al (2017) Structural insights into transcription initiation by yeast RNA polymerase I. EMBO J 36(18):2698–2709CrossRefPubMedPubMedCentralGoogle Scholar
  221. Sadowski CL, Henry RW, Lobo SM, Hernandez N (1993) Targeting TBP to a non-TATA box cis-regulatory element: a TBP-containing complex activates transcription from snRNA promoters through the PSE. Genes Dev 7:1535–1548CrossRefPubMedGoogle Scholar
  222. Sainsbury S, Niesser J, Cramer P (2013) Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature 493:437–440CrossRefPubMedGoogle Scholar
  223. Sainsbury S, Bernecky C, Cramer P (2015) Structural basis of transcription initiation by RNA polymerase II. Nat Rev Mol Cell Biol 16:129–143CrossRefPubMedGoogle Scholar
  224. Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8:424–436CrossRefPubMedGoogle Scholar
  225. Sanders SL, Garbett KA, Weil PA (2002) Molecular characterization of Saccharomyces cerevisiae TFIID. Mol Cell Biol 22:6000–6013CrossRefPubMedPubMedCentralGoogle Scholar
  226. Sandrock B, Egly JM (2001) A yeast four-hybrid system identifies Cdk-activating kinase as a regulator of the XPD helicase, a subunit of transcription factor IIH. J Biol Chem 276:35328–35333CrossRefPubMedGoogle Scholar
  227. Schilbach S, Hantsche M, Tegunov D, Dienemann C, Wigge C, Urlaub H, Cramer P (2017) Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 551:204–209CrossRefPubMedPubMedCentralGoogle Scholar
  228. Schneider DA (2012) RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 493:176–184CrossRefPubMedGoogle Scholar
  229. Schneider EV, Böttcher J, Blaesse M, Neumann L, Huber R, Maskos K (2011) The structure of CDK8/CycC implicates specificity in the CDK/cyclin family and reveals interaction with a deep pocket binder. J Mol Biol 412:251–266CrossRefPubMedGoogle Scholar
  230. Schramm L, Hernandez N (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev 16:2593–2620CrossRefPubMedGoogle Scholar
  231. Schramm L, Pendergrast PS, Sun Y, Hernandez N (2000) Different human TFIIIB activities direct RNA polymerase III transcription from TATA-containing and TATA-less promoters. Genes Dev 14:2650–2663CrossRefPubMedPubMedCentralGoogle Scholar
  232. Schultz P, Fribourg S, Poterszman A, Mallouh V, Moras D, Egly JM (2000) Molecular structure of human TFIIH. Cell 102:599–607CrossRefPubMedGoogle Scholar
  233. Shah SM, Kumar A, Geiduschek EP, Kassavetis GA (1999) Alignment of the B″ subunit of RNA polymerase III transcription factor IIIB in its promoter complex. J Biol Chem 274:28736–28744CrossRefPubMedGoogle Scholar
  234. Shiekhattar R et al (1995) Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374:283–287CrossRefPubMedPubMedCentralGoogle Scholar
  235. Sklar VE, Schwartz LB, Roeder RG (1975) Distinct molecular structures of nuclear class I, II, and III DNA-dependent RNA polymerases. Proc Natl Acad Sci USA 72:348–352CrossRefPubMedGoogle Scholar
  236. Smith DJ, Whitehouse I (2012) Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483:434–438CrossRefPubMedPubMedCentralGoogle Scholar
  237. Soutourina J (2018) Transcription regulation by the Mediator complex. Nat Rev Mol Cell Biol 19:262–274CrossRefPubMedGoogle Scholar
  238. Steffan JS, Keys DA, Vu L, Nomura M (1998) Interaction of TATA-binding protein with upstream activation factor is required for activated transcription of ribosomal DNA by RNA polymerase I in Saccharomyces cerevisiae in vivo. Mol Cell Biol 18:3752–3761CrossRefPubMedPubMedCentralGoogle Scholar
  239. Stillman DJ, Geiduschek EP (1984) Differential binding of a S. cerevisiae RNA polymerase III transcription factor to two promoter segments of a tRNA gene. EMBO J 3:847–853CrossRefPubMedPubMedCentralGoogle Scholar
  240. Stringer KF, Ingles CJ, Greenblatt J (1990) Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345:783–786CrossRefPubMedGoogle Scholar
  241. Sugasawa K, Akagi J-i, Nishi R, Iwai S, Hanaoka F (2009) Two-step recognition of DNA damage for mammalian nucleotide excision repair: Directional binding of the XPC complex and DNA strand scanning. Mol Cell 36:642–653CrossRefPubMedGoogle Scholar
  242. Sung P, Bailly V, Weber C, Thompson LH, Prakash L, Prakash S (1993) Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365:852–855CrossRefPubMedGoogle Scholar
  243. Svejstrup JQ et al (1995) Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80:21–28CrossRefPubMedGoogle Scholar
  244. Svetlov V, Nudler E (2013) Basic mechanism of transcription by RNA polymerase II. Biochim Biophys Acta 1829:20–28CrossRefPubMedGoogle Scholar
  245. Tafur L et al (2016) Molecular structures of transcribing RNA polymerase I. Mol Cell 64:1135–1143CrossRefPubMedPubMedCentralGoogle Scholar
  246. Tan S, Hunziker Y, Sargent DF, Richmond TJ (1996) Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381:127–151CrossRefPubMedGoogle Scholar
  247. Teichmann M, Wang Z, Roeder RG (2000) A stable complex of a novel transcription factor IIB-related factor, human TFIIIB50, and associated proteins mediate selective transcription by RNA polymerase III of genes with upstream promoter elements. Proc Natl Acad Sci USA 97:14200–14205CrossRefPubMedGoogle Scholar
  248. Theron T et al (2005) Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome. Mol Cell Biol 25:8368–8378CrossRefPubMedPubMedCentralGoogle Scholar
  249. Torreira E et al (2017) The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription. Elife 6:e20832CrossRefPubMedPubMedCentralGoogle Scholar
  250. Tsai K-L et al (2017) Mediator structure and rearrangements required for holoenzyme formation. Nature 544:196–201Google Scholar
  251. Tsai FT, Sigler PB (2000) Structural basis of preinitiation complex assembly on human pol II promoters. EMBO J 19:25–36CrossRefPubMedPubMedCentralGoogle Scholar
  252. Tsai K-L, Sato S, Tomomori-Sato C, Conaway RC, Conaway JW, Asturias FJ (2013) A conserved Mediator-CDK8 kinase module association regulates Mediator-RNA polymerase II interaction. Nat Struct Mol Biol 20:611–619CrossRefPubMedPubMedCentralGoogle Scholar
  253. Tsai K-L, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ (2014) Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 157:1430–1444CrossRefPubMedPubMedCentralGoogle Scholar
  254. Vannini A, Cramer P (2012) Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 45:439–446CrossRefPubMedGoogle Scholar
  255. Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I (2007) Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448:157–162CrossRefPubMedGoogle Scholar
  256. Verger A, Monté D, Villeret V (2019) Twenty years of Mediator complex structural studies. Biochem Soc Trans 47:399–410CrossRefPubMedPubMedCentralGoogle Scholar
  257. Vermeulen M et al (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69CrossRefPubMedGoogle Scholar
  258. Verrijzer CP, Chen JL, Yokomori K, Tjian R (1995) Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II. Cell 81:1115–1125CrossRefPubMedGoogle Scholar
  259. Vojnic E et al (2011) Structure and VP16 binding of the Mediator Med25 activator interaction domain. Nat Struct Mol Biol 18:404–409CrossRefPubMedGoogle Scholar
  260. Vorländer MK, Khatter H, Wetzel R, Hagen WJH, Müller CW (2018) Molecular mechanism of promoter opening by RNA polymerase III. Nature 553:295–300CrossRefPubMedPubMedCentralGoogle Scholar
  261. Wang D, Hawley DK (1993) Identification of a 3′–5′ exonuclease activity associated with human RNA polymerase II. Proc Natl Acad Sci USA 90:843–847CrossRefPubMedGoogle Scholar
  262. Wang Z, Roeder RG (1995) Structure and function of a human transcription factor TFIIIB subunit that is evolutionarily conserved and contains both TFIIB- and high-mobility-group protein 2-related domains. Proc Natl Acad Sci USA 92:7026–7030CrossRefPubMedGoogle Scholar
  263. Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD (2006) Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127:941–954CrossRefPubMedPubMedCentralGoogle Scholar
  264. Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437–440CrossRefPubMedGoogle Scholar
  265. Weeda G, van Ham RC, Vermeulen W, Bootsma D, van der Eb AJ, Hoeijmakers JH (1990) A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne’s syndrome. Cell 62:777–791CrossRefPubMedGoogle Scholar
  266. Weinmann R, Roeder RG (1974) Role of DNA-dependent RNA polymerase 3 in the transcription of the tRNA and 5S RNA genes. Proc Natl Acad Sci USA 71:1790–1794CrossRefPubMedGoogle Scholar
  267. Westover KD, Bushnell DA, Kornberg RD (2004) Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119:481–489CrossRefPubMedGoogle Scholar
  268. Wolski SC, Kuper J, Hänzelmann P, Truglio JJ, Croteau DL, Van Houten B, Kisker C (2008) Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol 6:e149CrossRefPubMedPubMedCentralGoogle Scholar
  269. Wu SY, Chiang CM (2001) TATA-binding protein-associated factors enhance the recruitment of RNA polymerase II by transcriptional activators. J Biol Chem 276:34235–34243CrossRefPubMedGoogle Scholar
  270. Wu C-C, Lin Y-C, Chen H-T (2011) The TFIIF-like Rpc37/53 dimer lies at the center of a protein network to connect TFIIIC, Bdp1, and the RNA polymerase III active center. Mol Cell Biol 31:2715–2728CrossRefPubMedPubMedCentralGoogle Scholar
  271. Wu C-C et al (2012) RNA polymerase III subunit architecture and implications for open promoter complex formation. Proc Natl Acad Sci USA 109:19232–19237CrossRefPubMedGoogle Scholar
  272. Xie X et al (1996) Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380:316–322CrossRefPubMedGoogle Scholar
  273. Yan Q, Moreland RJ, Conaway JW, Conaway RC (1999) Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J Biol Chem 274:35668–35675CrossRefPubMedGoogle Scholar
  274. Yudkovsky N, Ranish JA, Hahn S (2000) A transcription reinitiation intermediate that is stabilized by activator. Nature 408:225–229CrossRefPubMedGoogle Scholar
  275. Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98:811–824CrossRefPubMedGoogle Scholar
  276. Zhang Z et al (2015) Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. Elife 4:e07777CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyUSA
  2. 2.Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations