Advertisement

Functions and Mechanisms of the Human Ribosome-Translocon Complex

  • Sven LangEmail author
  • Duy Nguyen
  • Stefan Pfeffer
  • Friedrich Förster
  • Volkhard Helms
  • Richard Zimmermann
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 93)

Abstract

The membrane of the endoplasmic reticulum (ER) in human cells harbors the protein translocon, which facilitates membrane insertion and translocation of almost every newly synthesized polypeptide targeted to organelles of the secretory pathway. The translocon comprises the polypeptide-conducting Sec61 channel and several additional proteins, which are associated with the heterotrimeric Sec61 complex. This ensemble of proteins facilitates ER targeting of precursor polypeptides, Sec61 channel opening and closing, and modification of precursor polypeptides in transit through the Sec61 complex. Recently, cryoelectron tomography of translocons in native ER membranes has given unprecedented insights into the architecture and dynamics of the native, ribosome-associated translocon and the Sec61 channel. These structural data are discussed in light of different Sec61 channel activities including ribosome receptor function, membrane insertion or translocation of newly synthesized polypeptides as well as the possible roles of the Sec61 channel as a passive ER calcium leak channel and regulator of ATP/ADP exchange between cytosol and ER.

Keywords

Endoplasmic reticulum Membrane protein biogenesis Protein secretion Protein targeting Protein translocation Sec61 channel 

References

  1. Acosta-Alvear D, Karagöz GE, Fröhlich F, Li H, Walther TC, Walter P (2018) The unfolded protein response and endoplasmic reticulum protein targeting machineries converge on the stress sensor IRE1. eLife 7:e43036.  https://doi.org/10.7554/elife.43036
  2. Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y, Villalta JE, Gilbert LA, Horlbeck MA, Hein MY, Pak RA, Gray AN, Gross CA, Dixit A, Parnas O, Regev A, Weissman JS (2016) A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167(7):1867–1882.e1821.  https://doi.org/10.1016/j.cell.2016.11.048CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akimaru J, Matsuyama S-i, Tokuda H, Mizushima S (1991) Reconstitution of a Protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proc Natl Acad Sci USA 88:6545–6549CrossRefPubMedGoogle Scholar
  4. Anghel SA, McGilvray PT, Hegde RS, Keenan RJ (2017) Identification of Oxa1 homologs operating in the eukaryotic endoplasmic reticulum. Cell Reports 21(13):3708–3716.  https://doi.org/10.1016/j.celrep.2017.12.006CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ashby MC, Tepikin AV (2001) ER calcium and the functions of intracellular organelles. Semin Cell Dev Biol 12(1):11–17CrossRefPubMedGoogle Scholar
  6. Ast T, Cohen G, Schuldiner M (2013) A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152(5):1134–1145.  https://doi.org/10.1016/j.cell.2013.02.003CrossRefPubMedGoogle Scholar
  7. Ast T, Michaelis S, Schuldiner M (2016) The protease Ste24 clears clogged translocons. Cell 164(1):103–114.  https://doi.org/10.1016/j.cell.2015.11.053CrossRefPubMedPubMedCentralGoogle Scholar
  8. Auer J, Spicker G, Böck A (1991) Presence of a gene in the archaebacterium Methanococcus vannielii homologous to secY of eubacteria. Biochimie 73(6):683–688CrossRefPubMedGoogle Scholar
  9. Aviram N, Schuldiner M (2014) Embracing the void—how much do we really know about targeting and translocation to the endoplasmic reticulum? Curr Opin Cell Biol 29:8–17.  https://doi.org/10.1016/j.ceb.2014.02.004CrossRefPubMedGoogle Scholar
  10. Aviram N, Ast T, Costa EA, Arakel EC, Chuartzman SG, Jan CH, Haßdenteufel S, Dudek J, Jung M, Schorr S, Zimmermann R, Schwappach B, Weissman JS, Schuldiner M (2016) The SND proteins constitute an alternative targeting route to the endoplasmic reticulum. Nature 540(7631):134–138.  https://doi.org/10.1038/nature20169. http://www.nature.com/nature/journal/v540/n7631/abs/nature20169.html#supplementary-information
  11. Bähler M, Rhoads A (2002) Calmodulin signaling via the IQ motif. FEBS Lett 513(1):107–113.  https://doi.org/10.1016/S0014-5793(01)03239-2CrossRefPubMedGoogle Scholar
  12. Bai L, Wang T, Zhao G, Kovach A, Li H (2018) The atomic structure of a eukaryotic oligosaccharyltransferase complex. Nature.  https://doi.org/10.1038/nature25755. https://www.nature.com/articles/nature25755#supplementary-information
  13. Baker JA, Wong W-C, Eisenhaber B, Warwicker J, Eisenhaber F (2017) Charged residues next to transmembrane regions revisited: “positive-inside rule” is complemented by the “negative inside depletion/outside enrichment rule”. BMC Biol 15(1):66.  https://doi.org/10.1186/s12915-017-0404-4CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bañó-Polo M, Baldin F, Tamborero S, Marti-Renom MA, Mingarro I (2011) N-glycosylation efficiency is determined by the distance to the C-terminus and the amino acid preceding an Asn-Ser-Thr sequon. Protein Sci: Publ Protein Soc 20(1):179–186.  https://doi.org/10.1002/pro.551CrossRefGoogle Scholar
  15. Bañó-Polo M, Martínez-Garay CA, Grau B, Martínez-Gil L, Mingarro I (2017) Membrane insertion and topology of the translocon-associated protein (TRAP) gamma subunit. Biochim Biophys Acta (BBA)-Biomembr 1859(5):903–909. http://dx.doi.org/10.1016/j.bbamem.2017.01.027
  16. Baron L, Paatero AO, Morel J-D, Impens F, Guenin-Macé L, Saint-Auret S, Blanchard N, Dillmann R, Niang F, Pellegrini S, Taunton J, Paavilainen VO, Demangel C (2016) Mycolactone subverts immunity by selectively blocking the Sec61 translocon. J Exp Med 213(13):2885–2896.  https://doi.org/10.1084/jem.20160662CrossRefPubMedPubMedCentralGoogle Scholar
  17. Baumann O, Walz B (2001) Endoplasmic reticulum of animal cells and its organization into structural and functional domains. In: International review of cytology, vol 205. Academic Press, pp 149–214Google Scholar
  18. Becker T, Bhushan S, Jarasch A, Armache JP, Funes S, Jossinet F, Gumbart J, Mielke T, Berninghausen O, Schulten K, Westhof E, Gilmore R, Mandon EC, Beckmann R (2009) Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326(5958):1369–1373CrossRefPubMedPubMedCentralGoogle Scholar
  19. Benedix J, Lajoie P, Jaiswal H, Burgard C, Greiner M, Zimmermann R, Rospert S, Snapp EL, Dudek J (2010) BiP modulates the affinity of its co-chaperone ERj1 for ribosomes. J Biol Chem 285(47):36427–36433CrossRefPubMedPubMedCentralGoogle Scholar
  20. Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32(5–6):235–249CrossRefPubMedGoogle Scholar
  21. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529CrossRefPubMedGoogle Scholar
  22. Bischoff L, Wickles S, Berninghausen O, van der Sluis EO, Beckmann R (2014) Visualization of a polytopic membrane protein during SecY-mediated membrane insertion. Nat Commun 5:4103.  https://doi.org/10.1038/ncomms5103. https://www.nature.com/articles/ncomms5103#supplementary-information
  23. Blau M, Mullapudi S, Becker T, Dudek J, Zimmermann R, Penczek PA, Beckmann R (2005) ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane. Nat Struct Mol Biol 12(11):1015–1016CrossRefPubMedGoogle Scholar
  24. Blobel G (1980) Intracellular protein topogenesis. Proc Natl Acad Sci USA 77(3):1496–1500CrossRefPubMedGoogle Scholar
  25. Blobel G, Dobberstein B (1975a) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67(3):835–851Google Scholar
  26. Blobel G, Dobberstein B (1975b) Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J Cell Biol 67(3):852–862Google Scholar
  27. Borgese N, Fasana E (2011) Targeting pathways of C-tail-anchored proteins. Biochem Biophys Acta 1808(3):937–946CrossRefPubMedGoogle Scholar
  28. Borgese N, Righi M (2010) Remote origins of tail-anchored proteins. Traffic 11(7):877–885CrossRefPubMedGoogle Scholar
  29. Borgese N, Brambillasca S, Righi M, Colombo S (2009) Membrane insertion of tail-anchored proteins. In: Zimmermann R (ed) Protein transport into the endoplasmic reticulum. Landes Bioscience, pp 91–101Google Scholar
  30. Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Förster F, Beckmann R (2018) Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science 360(6385):215–219.  https://doi.org/10.1126/science.aar7899CrossRefPubMedPubMedCentralGoogle Scholar
  31. Brodsky JL, Scheckman R (1993) A Sec63-BiP complex is required for protein translocation in a reconstituted proteoliposome. J Cell Biol 123:1355–1263CrossRefPubMedGoogle Scholar
  32. Brodsky JL, Goeckeler J, Schekman R (1995) BiP and Sec63p are required for both co- and posttranslational protein translocation into the endoplasmic reticulum. Proc Natl Acad Sci 92(21):9643–9646CrossRefPubMedGoogle Scholar
  33. Brostrom MA, Brostrom CO (2003) Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium 34(4–5):345–363CrossRefPubMedGoogle Scholar
  34. Brundage L, Hendrick JP, Schiebel E, Driessen AJM, Wickner W (1990) The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62:649–657CrossRefPubMedGoogle Scholar
  35. Calo D, Eichler J (2011) Crossing the membrane in Archaea, the third domain of life. Biochem Biophys Acta 1808(3):885–891CrossRefPubMedGoogle Scholar
  36. Cao TB, Saier MH Jr (2003) The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochem Biophys Acta 1609(1):115–125CrossRefPubMedGoogle Scholar
  37. Casson J, McKenna M, Haßdenteufel S, Aviram N, Zimmerman R, High S (2017) Multiple pathways facilitate the biogenesis of mammalian tail-anchored proteins. J Cell Sci 130(22):3851–3861.  https://doi.org/10.1242/jcs.207829CrossRefPubMedPubMedCentralGoogle Scholar
  38. Chartron JW, Hunt KCL, Frydman J (2016) Cotranslational signal-independent SRP preloading during membrane targeting. Nature 536(7615):224–228.  https://doi.org/10.1038/nature19309
  39. Chatzi KE, Sardis MF, Tsirigotaki A, Koukaki M, Šoštarić N, Konijnenberg A, Sobott F, Kalodimos CG, Karamanou S, Economou A (2017) Preprotein mature domains contain translocase targeting signals that are essential for secretion. J Cell Biol.  https://doi.org/10.1083/jcb.201609022
  40. Chen X, VanValkenburgh C, Liang H, Fang H, Green N (2001) Signal peptidase and oligosaccharyltransferase interact in a sequential and dependent manner within the endoplasmic reticulum. J Biol Chem 276(4):2411–2416.  https://doi.org/10.1074/jbc.M007723200CrossRefPubMedGoogle Scholar
  41. Cheng Z, Jiang Y, Mandon EC, Gilmore R (2005) Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J Cell Biol 168(1):67–77CrossRefPubMedPubMedCentralGoogle Scholar
  42. Cherepanova N, Shrimal S, Gilmore R (2016) N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr Opin Cell Biol 41:57–65.  https://doi.org/10.1016/j.ceb.2016.03.021CrossRefPubMedPubMedCentralGoogle Scholar
  43. Chevet E, Wong HN, Gerber D, Cochet C, Fazel A, Cameron PH, Gushue JN, Thomas DY, Bergeron JJM (1999) Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes. EMBO J 18(13):3655–3666CrossRefPubMedPubMedCentralGoogle Scholar
  44. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328.  https://doi.org/10.1016/s0962-8924(00)01800-6CrossRefPubMedGoogle Scholar
  45. Chitwood PJ, Juszkiewicz S, Guna A, Shao S, Hegde RS (2018) EMC is required to initiate accurate membrane protein topogenesis. Cell 175(6):1507–1519.e1516.  https://doi.org/10.1016/j.cell.2018.10.009CrossRefPubMedPubMedCentralGoogle Scholar
  46. Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ, Richter CM, Tyler RE, Greenblatt EJ, Harper JW, Kopito RR (2011) Defining human ERAD networks through an integrative mapping strategy. Nat Cell Biol 14(1):93–105.  https://doi.org/10.1038/ncb2383CrossRefPubMedPubMedCentralGoogle Scholar
  47. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058CrossRefPubMedGoogle Scholar
  48. Coe H, Michalak M (2009) Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys 28(Focus Issue):F96–F103Google Scholar
  49. Conti BJ, Devaraneni PK, Yang Z, David LL, Skach WR (2015) Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events. Mol Cell 58(2):269–283.  https://doi.org/10.1016/j.molcel.2015.02.018
  50. Costa EA, Subramanian K, Nunnari J, Weissman JS (2018) Defining the physiological role of SRP in protein-targeting efficiency and specificity. Science 359(6376):689–692.  https://doi.org/10.1126/science.aar3607
  51. Cross BCS, High S (2009a) Dissecting the physiological role of selective transmembrane-segment retention at the ER translocon. J Cell Sci 122(11):1768–1777.  https://doi.org/10.1242/jcs.046094CrossRefPubMedGoogle Scholar
  52. Cross S, High S (2009b) Membrane protein biosynthesis at the endoplasmic reticulum. In: Zimmermann R (ed) Protein transport into the endoplasmic reticulum. Landes Bioscience, pp 77–89Google Scholar
  53. Csordás G, Weaver D, Hajnóczky G (2018) Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol 28(7):523–540.  https://doi.org/10.1016/j.tcb.2018.02.009CrossRefPubMedPubMedCentralGoogle Scholar
  54. Cui XA, Zhang H, Palazzo AF (2012) p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol 10(5):e1001336.  https://doi.org/10.1371/journal.pbio.1001336CrossRefPubMedPubMedCentralGoogle Scholar
  55. Cui XA, Zhang Y, Hong SJ, Palazzo AF (2013) Identification of a region within the placental alkaline phosphatase mRNA that mediates p180-dependent targeting to the endoplasmic reticulum. J Biol Chem 288(41):29633–29641.  https://doi.org/10.1074/jbc.M113.482505CrossRefPubMedPubMedCentralGoogle Scholar
  56. Dalal K, Duong F (2009) The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 21(9):506–514CrossRefGoogle Scholar
  57. Dalbey RE, von Heijne G (1992) Signal peptidases in prokaryotes and eukaryotes—a new protease family. Trends Biochem Sci 17(11):474–478.  https://doi.org/10.1016/0968-0004(92)90492-RCrossRefPubMedGoogle Scholar
  58. Dejgaard K, Theberge J-F, Heath-Engel H, Chevet E, Tremblay ML, Thomas DY (2010) Organization of the Sec61 translocon, studied by high resolution native electrophoresis. J Proteome Res 9(4):1763–1771.  https://doi.org/10.1021/pr900900xCrossRefPubMedGoogle Scholar
  59. Denks K, Vogt A, Sachelaru I, Petriman N-A, Kudva R, Koch H-G (2014) The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 31(2–3):58–84.  https://doi.org/10.3109/09687688.2014.907455CrossRefPubMedGoogle Scholar
  60. Deshaies RJ, Schekman R (1987) A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J Cell Biol 105(2):633–645.  https://doi.org/10.1083/jcb.105.2.633CrossRefPubMedGoogle Scholar
  61. Deshaies RJ, Sanders SL, Feldheim DA, Schekman R (1991) Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature 349(6312):806–808CrossRefPubMedGoogle Scholar
  62. Devaraneni PK, Conti B, Matsumura Y, Yang Z, Johnson AE, Skach WR (2011) Stepwise insertion and inversion of a type II signal anchor sequence in the ribosome-Sec61 translocon complex. Cell 146(1):134–147CrossRefPubMedPubMedCentralGoogle Scholar
  63. Driessen AJM, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77(1):643–667.  https://doi.org/10.1146/annurev.biochem.77.061606.160747CrossRefPubMedGoogle Scholar
  64. du Plessis DJF, Berrelkamp G, Nouwen N, Driessen AJM (2009) The lateral gate of SecYEG opens during protein translocation. J Biol Chem 284(23):15805–15814.  https://doi.org/10.1074/jbc.M901855200CrossRefPubMedPubMedCentralGoogle Scholar
  65. du Plessis DJF, Nouwen N, Driessen AJM (2011) The Sec translocase. Biochem Biophys Acta 1808(3):851–865CrossRefPubMedGoogle Scholar
  66. Dudek J, Volkmer J, Bies C, Guth S, Müller A, Lerner M, Feick P, Schäfer K-H, Morgenstern E, Hennessy F, Blatch GL, Janoscheck K, Heim N, Scholtes P, Frien M, Nastainczyk W, Zimmermann R (2002) A novel type of co-chaperone mediates transmembrane recruitment of DnaK-like chaperones to ribosomes. EMBO J 21(12):2958–2967CrossRefPubMedPubMedCentralGoogle Scholar
  67. Dudek J, Greiner M, Müller A, Hendershot LM, Kopsch K, Nastainczyk W, Zimmermann R (2005) ERj1p has a basic role in protein biogenesis at the endoplasmic reticulum. Nat Struct Mol Biol 12:1008.  https://doi.org/10.1038/nsmb1007. https://www.nature.com/articles/nsmb1007#supplementary-information
  68. Dudek J, Benedix J, Cappel S, Greiner M, Jalal C, Müller L, Zimmermann R (2009) Functions and pathologies of BiP and its interaction partners. Cell Mol Life Sci 66(9):1556–1569CrossRefPubMedGoogle Scholar
  69. Dudek J, Pfeffer S, Lee P-H, Jung M, Cavalié A, Helms V, Förster F, Zimmermann R (2015) Protein transport into the human endoplasmic reticulum. J Mol Biol 427(6, Part A):1159–1175. http://doi.org/10.1016/j.jmb.2014.06.011
  70. Egea PF, Stroud RM (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci 107(40):17182–17187.  https://doi.org/10.1073/pnas.1012556107CrossRefPubMedGoogle Scholar
  71. Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM (2004) Substrate twinning activates the signal recognition particle and its receptor. Nature 427(6971):215–221CrossRefPubMedGoogle Scholar
  72. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26(10):597–604.  https://doi.org/10.1016/S0968-0004(01)01938-7CrossRefPubMedGoogle Scholar
  73. Erdmann F, Jung M, Eyrisch S, Lang S, Helms V, Wagner R, Zimmermann R (2009) Lanthanum ions inhibit the mammalian Sec61 complex in its channel dynamics and protein transport activity. FEBS Lett 583(14):2359–2364CrossRefPubMedGoogle Scholar
  74. Erdmann F, Schäuble N, Lang S, Jung M, Honigmann A, Ahmad M, Dudek J, Benedix J, Harsman A, Kopp A, Helms V, Cavalié A, Wagner R, Zimmermann R (2011) Interaction of calmodulin with Sec61alpha limits Ca2+ leakage from the endoplasmic reticulum. EMBO J 30(1):17–31CrossRefPubMedGoogle Scholar
  75. Evans EA, Gilmore R, Blobel G (1986) Purification of microsomal signal peptidase as a complex. Proc Natl Acad Sci USA 83:581–585CrossRefPubMedGoogle Scholar
  76. Fedeles SV, Tian X, Gallagher A-R, Mitobe M, Nishio S, Lee SH, Cai Y, Geng L, Crews CM, Somlo S (2011) A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat Genet 43(7):639–647CrossRefPubMedPubMedCentralGoogle Scholar
  77. Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353:726–730CrossRefPubMedGoogle Scholar
  78. Fons RD, Bogert BA, Hegde RS (2003) Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol 160(4):529–539CrossRefPubMedPubMedCentralGoogle Scholar
  79. Friedman JR, Voeltz GK (2011) The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol 21(12):709–717CrossRefPubMedPubMedCentralGoogle Scholar
  80. Fumagalli F, Noack J, Bergmann Timothy J, Cebollero E, Pisoni Giorgia B, Fasana E, Fregno I, Galli C, Loi M, Soldà T, D’Antuono R, Raimondi A, Jung M, Melnyk A, Schorr S, Schreiber A, Simonelli L, Varani L, Wilson-Zbinden C, Zerbe O, Hofmann K, Peter M, Quadroni M, Zimmermann R, Molinari M (2016) Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol 18:1173.  https://doi.org/10.1038/ncb3423. https://www.nature.com/articles/ncb3423#supplementary-information
  81. Gamayun I, O’Keefe S, Pick T, Klein M-C, Nguyen D, McKibbin C, Piacenti M, Williams HM, Flitsch SL, Whitehead RC, Swanton E, Helms V, High S, Zimmermann R, Cavalié A (2019) Eeyarestatin compounds selectively enhance Sec61-mediated Ca2+ leakage from the endoplasmic reticulum. Cell Chem Biol.  https://doi.org/10.1016/j.chembiol.2019.01.010
  82. Gamerdinger M, Hanebuth MA, Frickey T, Deuerling E (2015) The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 348(6231):201–207.  https://doi.org/10.1126/science.aaa5335CrossRefPubMedGoogle Scholar
  83. Garrison JL, Kunkel EJ, Hegde RS, Taunton J (2005) A substrate-specific inhibitor of protein translocation into the endoplasmic reticulum. Nature 436:285.  https://doi.org/10.1038/nature03821. https://www.nature.com/articles/nature03821#supplementary-information
  84. Gatta AT, Levine TP (2017) Piecing together the patchwork of contact sites. Trends Cell Biol 27(3):214–229.  https://doi.org/10.1016/j.tcb.2016.08.010CrossRefPubMedGoogle Scholar
  85. Gilmore R, Blobel G, Walter P (1982a) Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J Cell Biol 95(2):463–469Google Scholar
  86. Gilmore R, Walter P, Blobel G (1982b) Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J Cell Biol 95(2):470–477Google Scholar
  87. Goder V, Spiess M (2003) Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J 22(14):3645–3653CrossRefPubMedPubMedCentralGoogle Scholar
  88. Goder V, Junne T, Spiess M (2004) Sec61p contributes to signal sequence orientation according to the positive-inside rule. Mol Biol Cell 15(3):1470–1478.  https://doi.org/10.1091/mbc.e03-08-0599CrossRefPubMedPubMedCentralGoogle Scholar
  89. Gogala M, Becker T, Beatrix B, Armache J-P, Barrio-Garcia C, Berninghausen O, Beckmann R (2014) Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506(7486):107–110.  https://doi.org/10.1038/nature12950CrossRefPubMedGoogle Scholar
  90. Gonsberg A, Jung S, Ulbrich S, Origi A, Ziska A, Baier M, Koch H-G, Zimmermann R, Winklhofer KF, Tatzelt J (2017) The Sec61/SecY complex is inherently deficient in translocating intrinsically disordered proteins. J Biol Chem.  https://doi.org/10.1074/jbc.m117.788067
  91. Görlich D, Rapoport TA (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75(4):615–630CrossRefPubMedGoogle Scholar
  92. Görlich D, Prehn S, Hartmann E, Kalies KU, Rapoport TA (1992) A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71(3):489–503CrossRefPubMedGoogle Scholar
  93. Greiner M, Kreutzer B, Lang S, Jung V, Cavalié A, Unteregger G, Zimmermann R, Wullich B (2011) Sec62 protein level is crucial for the ER stress tolerance of prostate cancer. Prostate 71(10):1074–1083.  https://doi.org/10.1002/pros.21324CrossRefPubMedGoogle Scholar
  94. Guna A, Volkmar N, Christianson JC, Hegde RS (2017) The ER membrane protein complex is a transmembrane domain insertase. Science.  https://doi.org/10.1126/science.aao3099
  95. Guven J, Huber G, Valencia DM (2014) Terasaki spiral ramps in the rough endoplasmic reticulum. Phys Rev Lett 113(18):188101CrossRefPubMedGoogle Scholar
  96. Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306(5941):387–389.  https://doi.org/10.1038/306387a0CrossRefPubMedGoogle Scholar
  97. Halic M, Beckmann R (2005) The signal recognition particle and its interactions during protein targeting. Curr Opin Struct Biol 15(1):116–125CrossRefPubMedGoogle Scholar
  98. Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J, Beckmann R (2004) Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427(6977):808–814CrossRefPubMedGoogle Scholar
  99. Hann BC, Walter P (1991) The signal recognition particle in S. cerevisiae. Cell 67(1):131–144Google Scholar
  100. Harada Y, Li H, Wall JS, Li H, Lennarz WJ (2011) Structural studies and the assembly of the heptameric post-translational translocon complex. J Biol Chem 286(4):2956–2965.  https://doi.org/10.1074/jbc.M110.159517CrossRefPubMedGoogle Scholar
  101. Harsman A, Bartsch P, Hemmis B, Wagner R (2011a) Exploring protein import pores of cellular organelles at the single molecule level using the planar lipid bilayer technique. Eur J Cell Biol 90(9):721–730CrossRefPubMedGoogle Scholar
  102. Harsman A, Kopp A, Wagner R, Zimmermann R, Jung M (2011b) Calmodulin regulation of the calcium-leak channel Sec61 is unique to vertebrates. Channels 5(4):293–298CrossRefPubMedGoogle Scholar
  103. Harsman A, Krüger V, Bartsch P, Honigmann A, Schmidt O, Rao S, Meisinger C, Wagner R (2011c) Protein conducting nanopores. J Phys: Condens Matter 22(45):454102Google Scholar
  104. Hartmann E, Görlich D, Kostka S, Otto A, Kraft R, Knespel S, Bürger E, Rapoport TA, Prehn S (1993) A tetrameric complex of membrane proteins in the endoplasmic reticulum. Eur J Biochem 214(2):375–381.  https://doi.org/10.1111/j.1432-1033.1993.tb17933.xCrossRefPubMedGoogle Scholar
  105. Hartmann E, Sommer T, Prehn S, Gorlich D, Jentsch S, Rapoport TA (1994) Evolutionary conservation of components of the protein translocation complex. Nature 367(6464):654–657CrossRefPubMedGoogle Scholar
  106. Haßdenteufel S, Schäuble N, Cassella P, Leznicki P, Müller A, High S, Jung M, Zimmermann R (2011) Ca2+-calmodulin inhibits tail-anchored protein insertion into the mammalian endoplasmic reticulum membrane. FEBS Lett 585(21):3485–3490CrossRefPubMedPubMedCentralGoogle Scholar
  107. Haßdenteufel S, Klein M-C, Melnyk A, Zimmermann R (2014) Protein transport into the human ER and related diseases, Sec61-channelopathies. Biochem Cell Biol 92(6):499–509.  https://doi.org/10.1139/bcb-2014-0043CrossRefPubMedGoogle Scholar
  108. Haßdenteufel S, Sicking M, Schorr S, Aviram N, Fecher-Trost C, Schuldiner M, Jung M, Zimmermann R, Lang S (2017) hSnd2 protein represents an alternative targeting factor to the endoplasmic reticulum in human cells. FEBS Lett 591(20):3211–3224.  https://doi.org/10.1002/1873-3468.12831CrossRefPubMedGoogle Scholar
  109. Haßdenteufel S, Johnson N, Paton AW, Paton JC, High S, Zimmermann R (2018) Chaperone-mediated Sec61 channel gating during ER import of small precursor proteins overcomes Sec61 inhibitor-reinforced energy barrier. Cell Rep 23(5):1373–1386.  https://doi.org/10.1016/j.celrep.2018.03.122CrossRefPubMedPubMedCentralGoogle Scholar
  110. Hebert DN, Foellmer B, Helenius A (1996) Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J 15(12):2961–2968.  https://doi.org/10.1002/j.1460-2075.1996.tb00659.xCrossRefPubMedPubMedCentralGoogle Scholar
  111. Hegde RS, Voigt S, Rapoport TA, Lingappa VR (1998) TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell 92(5):621–631.  https://doi.org/10.1016/S0092-8674(00)81130-7CrossRefPubMedGoogle Scholar
  112. Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M (2015) A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163(3):712–723.  https://doi.org/10.1016/j.cell.2015.09.053CrossRefPubMedGoogle Scholar
  113. Hennessy F, Cheetham ME, Dirr HW, Blatch GL (2000) Analysis of the levels of conservation of the J domain among the various types of DnaJ-like proteins. Cell Stress Chaperones 5(4):347–358CrossRefPubMedPubMedCentralGoogle Scholar
  114. Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 14(7):1697–1709CrossRefPubMedPubMedCentralGoogle Scholar
  115. Heritage D, Wonderlin WF (2001) Translocon pores in the endoplasmic reticulum are permeable to a neutral, polar molecule. J Biol Chem 276(25):22655–22662CrossRefPubMedGoogle Scholar
  116. High S, Andersen SSL, Görlich D, Hartmann E, Prehn S, Rapoport TA, Dobberstein B (1993) Sec61p is adjacent to nascent type I and type II signal-anchor proteins during their membrane insertion. J Cell Biol 121(4):743–750CrossRefPubMedGoogle Scholar
  117. Hizlan D, Robson A, Whitehouse S, Gold V, Vonck J, Mills D, Kühlbrandt W, Collinson I (2012) Structure of the SecY complex unlocked by a preprotein mimic. Cell Reports 1(1):21–28CrossRefPubMedPubMedCentralGoogle Scholar
  118. Hollien J, Weissman JS (2006) Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313(5783):104–107.  https://doi.org/10.1126/science.1129631CrossRefPubMedGoogle Scholar
  119. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS (2009) Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 186(3):323–331.  https://doi.org/10.1083/jcb.200903014CrossRefPubMedPubMedCentralGoogle Scholar
  120. Ingolia NT (2016) Ribosome Footprint Profiling of Translation throughout the Genome. Cell 165(1):22–33.  https://doi.org/10.1016/j.cell.2016.02.066
  121. Ismail N, Crawshaw Samuel G, Cross Benedict CS, Haagsma Anna C, High S (2008) Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis. Biochem J 411(3):495–506.  https://doi.org/10.1042/bj20071597CrossRefPubMedGoogle Scholar
  122. Itskanov S, Park E (2018) Structure of the posttranslational Sec protein-translocation channel complex from yeast. Science eaav6740.  https://doi.org/10.1126/science.aav6740
  123. Jadhav B, McKenna M, Johnson N, High S, Sinning I, Pool MR (2015) Mammalian SRP receptor switches the Sec61 translocase from Sec62 to SRP-dependent translocation. Nat Commun 6.  https://doi.org/10.1038/ncomms10133
  124. Jermy AJ, Willer M, Davis E, Wilkinson BM, Stirling CJ (2006) The Brl domain in Sec63p is required for assembly of functional endoplasmic reticulum translocons. J Biol Chem 281(12):7899–7906CrossRefPubMedGoogle Scholar
  125. Johnson N, Vilardi F, Lang S, Leznicki P, Zimmermann R, High S (2012) TRC40 can deliver short secretory proteins to the Sec61 translocon. J Cell Sci.  https://doi.org/10.1242/jcs.102608
  126. Johnson N, Haßdenteufel S, Theis M, Paton AW, Paton JC, Zimmermann R, High S (2013) The signal sequence influences post-translational ER translocation at distinct stages. PLoS ONE 8(10):e75394.  https://doi.org/10.1371/journal.pone.0075394CrossRefPubMedPubMedCentralGoogle Scholar
  127. Jomaa A, Boehringer D, Leibundgut M, Ban N (2016) Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun 7.  https://doi.org/10.1038/ncomms10471
  128. Jomaa A, Fu Y-HH, Boehringer D, Leibundgut M, Shan S-O, Ban N (2017) Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome. Nat Commun 8:15470.  https://doi.org/10.1038/ncomms15470. https://www.nature.com/articles/ncomms15470#supplementary-information
  129. Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS, Schuldiner M (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323(5922):1693–1697CrossRefPubMedPubMedCentralGoogle Scholar
  130. Jung S-j, Kim JEH, Reithinger JH, Kim H (2014) The Sec62–Sec63 translocon facilitates translocation of the C-terminus of membrane proteins. J Cell Sci 127(19):4270–4278.  https://doi.org/10.1242/jcs.153650CrossRefPubMedGoogle Scholar
  131. Junne T, Schwede T, Goder V, Spiess M (2006) The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol Biol Cell 17(9):4063–4068.  https://doi.org/10.1091/mbc.E06-03-0200CrossRefPubMedPubMedCentralGoogle Scholar
  132. Kalbfleisch T, Cambon A, Wattenberg BW (2007) A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic 8(12):1687–1694.  https://doi.org/10.1111/j.1600-0854.2007.00661.xCrossRefPubMedGoogle Scholar
  133. Kalies KU, Görlich D, Rapoport TA (1994) Binding of ribosomes to the rough endoplasmic reticulum mediated by the Sec61p-complex. J Cell Biol 126:925–934CrossRefPubMedGoogle Scholar
  134. Kalies K-U, Rapoport TA, Hartmann E (1998) The beta-subunit of the Sec61 complex facilitates cotranslational protein transport and interacts with the signal peptidase during translocation. J Cell Biol 141(4):887–894.  https://doi.org/10.1083/jcb.141.4.887CrossRefPubMedPubMedCentralGoogle Scholar
  135. Kamariah N, Eisenhaber F, Adhikari S, Eisenhaber B, Gruber G (2011) Purification and crystallization of yeast glycosylphosphatidylinositol transamidase subunit PIG-S (PIG-S71-467). Acta Crystallogr Sect F 67(8):896–899.  https://doi.org/10.1107/S1744309111024080CrossRefGoogle Scholar
  136. Kapp K, Schrempf S, Lemberg M, Dobberstein B (2009) Post-targeting functions of signal peptides. In: Zimmermann R (ed) Protein transport into the endoplasmic reticulum. Landes Bioscience, pp 1–16Google Scholar
  137. Kayatekin C, Amasino A, Gaglia G, Flannick J, Bonner JM, Fanning S, Narayan P, Barrasa MI, Pincus D, Landgraf D, Nelson J, Hesse WR, Costanzo M, Myers CL, Boone C, Florez JC, Lindquist S (2018) Translocon declogger Ste24 protects against IAPP oligomer-induced proteotoxicity. Cell 173(1):62–73.e69.  https://doi.org/10.1016/j.cell.2018.02.026CrossRefPubMedPubMedCentralGoogle Scholar
  138. Kelleher DJ, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16(4):47R–62R.  https://doi.org/10.1093/glycob/cwj066CrossRefPubMedGoogle Scholar
  139. Kinch LN, Saier JMH, Grishin NV (2002) Sec61beta—a component of the archaeal protein secretory system. Trends Biochem Sci 27(4):170–171CrossRefPubMedGoogle Scholar
  140. Klein M-C, Zimmermann K, Schorr S, Landini M, Klemens PAW, Altensell J, Jung M, Krause E, Nguyen D, Helms V, Rettig J, Fecher-Trost C, Cavalié A, Hoth M, Bogeski I, Neuhaus HE, Zimmermann R, Lang S, Haferkamp I (2018) AXER is an ATP/ADP exchanger in the membrane of the endoplasmic reticulum. Nat Commun 9(1):3489.  https://doi.org/10.1038/s41467-018-06003-9CrossRefPubMedPubMedCentralGoogle Scholar
  141. Koning RI, Koster AJ, Sharp TH (2018) Advances in cryo-electron tomography for biology and medicine. Ann Anat-Anat Anz 217:82–96.  https://doi.org/10.1016/j.aanat.2018.02.004CrossRefGoogle Scholar
  142. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci 44(2):98–104.  https://doi.org/10.1073/pnas.44.2.98CrossRefPubMedGoogle Scholar
  143. Kowarik M, Küng S, Martoglio B, Helenius A (2002) Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol Cell 10(4):769–778.  https://doi.org/10.1016/S1097-2765(02)00685-8CrossRefPubMedGoogle Scholar
  144. Kumar DP, Vorvis C, Sarbeng EB, Cabra Ledesma VC, Willis JE, Liu Q (2011) The four hydrophobic residues on the Hsp70 inter-domain linker have two distinct roles. J Mol Biol 411(5):1099–1113CrossRefPubMedPubMedCentralGoogle Scholar
  145. Kutay U, Hartmann E, Rapoport TA (1993) A class of membrane proteins with a C-terminal anchor. Trends Cell Biol 3(3):72–75CrossRefPubMedGoogle Scholar
  146. Lakkaraju AK, Abrami L, Lemmin T, Blaskovic S, Kunz B, Kihara A, Dal Peraro M, van der Goot FG (2012a) Palmitoylated calnexin is a key component of the ribosome–translocon complex. EMBO J 31(7):1823–1835.  https://doi.org/10.1038/emboj.2012.15CrossRefPubMedPubMedCentralGoogle Scholar
  147. Lakkaraju AKK, Thankappan R, Mary C, Garrison JL, Taunton J, Strub K (2012b) Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol Biol Cell 23(14):2712–2722.  https://doi.org/10.1091/mbc.E12-03-0228CrossRefPubMedPubMedCentralGoogle Scholar
  148. Lang S, Erdmann F, Jung M, Wagner R, Cavalié A, Zimmermann R (2011a) Sec61 complexes form ubiquitous ER Ca2+ leak channels. Channels 5(4):228–235CrossRefPubMedGoogle Scholar
  149. Lang S, Schäuble N, Cavalié A, Zimmermann R (2011b) Live cell calcium imaging combined with siRNA mediated gene silencing identifies Ca2+ leak channels in the ER membrane and their regulatory mechanisms. J Vis Exp 53:e2730.  https://doi.org/10.3791/2730CrossRefGoogle Scholar
  150. Lang S, Benedix J, Fedeles SV, Schorr S, Schirra C, Schäuble N, Jalal C, Greiner M, Haßdenteufel S, Tatzelt J, Kreutzer B, Edelmann L, Krause E, Rettig J, Somlo S, Zimmermann R, Dudek J (2012) Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J Cell Sci 125(8):1958–1969.  https://doi.org/10.1242/jcs.096727CrossRefPubMedPubMedCentralGoogle Scholar
  151. Lang S, Pfeffer S, Lee P-H, Cavalié A, Helms V, Förster F, Zimmermann R (2017) An update on Sec61 channel functions, mechanisms, and related diseases. Front Physiol 8(887).  https://doi.org/10.3389/fphys.2017.00887
  152. Larkin A, Imperiali B (2011) The expanding horizons of asparagine-linked glycosylation. Biochemistry 50(21):4411–4426.  https://doi.org/10.1021/bi200346nCrossRefPubMedPubMedCentralGoogle Scholar
  153. Le Gall S, Neuhof A, Rapoport T (2004) The endoplasmic reticulum membrane is permeable to small molecules. Mol Biol Cell 15(2):447–455CrossRefPubMedPubMedCentralGoogle Scholar
  154. Lemberg MK, Martoglio B (2002) Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol Cell 10(4):735–744CrossRefPubMedGoogle Scholar
  155. Li W, Schulman S, Boyd D, Erlandson K, Beckwith J, Rapoport TA (2007) The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol Cell 26(4):511–521CrossRefPubMedGoogle Scholar
  156. Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA (2016) Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531(7594):395–399.  https://doi.org/10.1038/nature17163. http://www.nature.com/nature/journal/v531/n7594/abs/nature17163.html#supplementary-information
  157. Liebermeister W, Rapoport TA, Heinrich R (2001) Ratcheting in post-translational protein translocation: a mathematical model. J Mol Biol 305(3):643–656CrossRefPubMedGoogle Scholar
  158. Lievremont JP, Rizzuto R, Hendershot L, Meldolesi J (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem 272(49):30873–30879CrossRefPubMedGoogle Scholar
  159. Linxweiler M, Schorr S, Schäuble N, Jung M, Linxweiler J, Langer F, Schäfers H-J, Cavalié A, Zimmermann R, Greiner M (2013) Targeting cell migration and the endoplasmic reticulum stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells. BMC Cancer 13(1):574.  https://doi.org/10.1186/1471-2407-13-574CrossRefPubMedPubMedCentralGoogle Scholar
  160. Linxweiler M, Schick B, Zimmermann R (2017) Let’s talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. 2:17002.  https://doi.org/10.1038/sigtrans.2017.2
  161. Lloyd DJ, Wheeler MC, Gekakis N (2010) A point mutation in Sec61alpha1 leads to diabetes and hepatosteatosis in mice. Diabetes 59(2):460–470CrossRefPubMedGoogle Scholar
  162. Lučić V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202(3):407–419.  https://doi.org/10.1083/jcb.201304193CrossRefPubMedPubMedCentralGoogle Scholar
  163. Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28(1):51–65.  https://doi.org/10.1016/j.jchemneu.2003.08.007CrossRefPubMedGoogle Scholar
  164. MacKinnon AL, Paavilainen VO, Sharma A, Hegde RS, Taunton J (2014) An allosteric Sec61 inhibitor traps nascent transmembrane helices at the lateral gate. eLife 3:e01483.  https://doi.org/10.7554/elife.01483
  165. Mades A, Gotthardt K, Awe K, Stieler J, Döring T, Füser S, Prange R (2012) Role of human Sec63 in modulating the steady-state levels of multi-spanning membrane proteins. PLoS ONE 7(11):e49243.  https://doi.org/10.1371/journal.pone.0049243CrossRefPubMedPubMedCentralGoogle Scholar
  166. Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Kuhn Cuellar L, Förster F, Hyman AA, Plitzko JM, Baumeister W (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351(6276):969–972.  https://doi.org/10.1126/science.aad8857CrossRefPubMedGoogle Scholar
  167. Malsburg KVD, Shao S, Hegde RS (2015) The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol Biol Cell 26(12):2168–2180.  https://doi.org/10.1091/mbc.E15-01-0040CrossRefPubMedPubMedCentralGoogle Scholar
  168. Mandon EC, Butova C, Lachapelle A, Gilmore R (2018) Conserved motifs on the cytoplasmic face of the protein translocation channel are critical for the transition between resting and active conformations. J Biol Chem.  https://doi.org/10.1074/jbc.ra118.004123
  169. Marcinowski M, Höller M, Feige MJ, Baerend D, Lamb DC, Buchner J (2011) Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nat Struct Mol Biol 18(2):150–158CrossRefPubMedGoogle Scholar
  170. Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A, Keenan RJ, Hegde RS (2010) A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466(7310):1120–1124CrossRefPubMedPubMedCentralGoogle Scholar
  171. Matlack KES, Mothes W, Rapoport TA (1998) Protein translocation: tunnel vision. Cell 92(3):381–390CrossRefPubMedGoogle Scholar
  172. Matlack KES, Misselwitz B, Plath K, Rapoport TA (1999) BiP acts as a molecular ratchet during posttranslational transport of prepro-a factor across the ER membrane. Cell 97(5):553–564CrossRefPubMedGoogle Scholar
  173. McKenna M, Simmonds RE, High S (2017) Mycolactone reveals the substrate-driven complexity of Sec61-dependent transmembrane protein biogenesis. J Cell Sci 130(7):1307–1320.  https://doi.org/10.1242/jcs.198655CrossRefPubMedPubMedCentralGoogle Scholar
  174. Meacock SL, Lecomte FJL, Crawshaw SG, High S (2002) Different transmembrane domains associate with distinct endoplasmic reticulum components during membrane integration of a polytopic protein. Mol Biol Cell 13(12):4114–4129.  https://doi.org/10.1091/mbc.E02-04-0198CrossRefPubMedPubMedCentralGoogle Scholar
  175. Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23(1):10–14CrossRefPubMedGoogle Scholar
  176. Melnyk A, Rieger H, Zimmermann R (2015) Co-chaperones of the mammalian endoplasmic reticulum. In: Blatch GL, Edkins AL (eds) The networking of chaperones by co-chaperones: control of cellular protein homeostasis. Springer International Publishing, Cham, pp 179–200.  https://doi.org/10.1007/978-3-319-11731-7_9
  177. Ménétret JF, Hegde RS, Heinrich SU, Chandramouli P, Ludtke SJ, Rapoport TA, Akey CW (2005) Architecture of the ribosome-channel complex derived from native membranes. J Mol Biol 348(2):445–457CrossRefPubMedGoogle Scholar
  178. Ménétret JF, Schaletzky J, Clemons WM Jr, Osborne AR, Skanland SS, Denison C, Gygi SP, Kirkpatrick DS, Park E, Ludtke SJ, Rapoport TA, Akey CW (2007) Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol Cell 28(6):1083–1092CrossRefPubMedGoogle Scholar
  179. Ménétret JF, Hegde RS, Aguiar M, Gygi SP, Park E, Rapoport TA, Akey CW (2008) Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16(7):1126–1137CrossRefPubMedPubMedCentralGoogle Scholar
  180. Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32(5–6):269–278CrossRefPubMedGoogle Scholar
  181. Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119(14):2863–2869.  https://doi.org/10.1242/jcs.03063CrossRefPubMedGoogle Scholar
  182. Mogami H, Tepikin AV, Petersen OH (1998) Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. EMBO J 17(2):435–442CrossRefPubMedPubMedCentralGoogle Scholar
  183. Möller I, Jung M, Beatrix B, Levy R, Kreibich G, Zimmermann R, Wiedmann M, Lauring B (1998) A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc Natl Acad Sci 95(23):13425–13430.  https://doi.org/10.1073/pnas.95.23.13425CrossRefPubMedGoogle Scholar
  184. Moran U, Phillips R, Milo R (2010) SnapShot: key numbers in biology. Cell 141(7):1262CrossRefPubMedGoogle Scholar
  185. Morrow MW, Brodsky JL (2001) Yeast ribosomes bind to highly purified reconstituted Sec61p complex and to mammalian p180. Traffic 2(10):705–716CrossRefPubMedGoogle Scholar
  186. Müller L, Diaz de Escauriaza M, Lajoie P, Theis M, Jung M, Müller A, Burgard C, Greiner M, Snapp EL, Dudek J, Zimmermann R (2010) Evolutionary gain of function for the ER membrane protein Sec62 from yeast to humans. Mol Biol Cell 21(5):691–703CrossRefPubMedPubMedCentralGoogle Scholar
  187. Ng DT, Brown JD, Walter P (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134(2):269–278.  https://doi.org/10.1083/jcb.134.2.269CrossRefPubMedGoogle Scholar
  188. Nguyen D, Stutz R, Schorr S, Lang S, Pfeffer S, Freeze HH, Förster F, Helms V, Dudek J, Zimmermann R (2018) Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import. Nat Commun 9(1):3765.  https://doi.org/10.1038/s41467-018-06188-zCrossRefPubMedPubMedCentralGoogle Scholar
  189. Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581(19):3641–3651CrossRefPubMedPubMedCentralGoogle Scholar
  190. Nilsson IM, von Heijne G (1993) Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem 268(8):5798–5801PubMedGoogle Scholar
  191. Nilsson I, Kelleher DJ, Miao Y, Shao Y, Kreibich G, Gilmore R, von Heijne G, Johnson AE (2003) Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex. J Cell Biol 161(4):715–725CrossRefPubMedPubMedCentralGoogle Scholar
  192. Nishiyama K-i, Hanada M, Tokuda H (1994) Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J 13(14):3272–3277CrossRefPubMedPubMedCentralGoogle Scholar
  193. Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu CS, Pasolli HA, Harvey K, Hess HF, Betzig E, Blackstone C, Lippincott-Schwartz J (2016) Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354(6311).  https://doi.org/10.1126/science.aaf3928
  194. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21(1):205–215CrossRefPubMedGoogle Scholar
  195. Otero JH, Lizak B, Hendershot LM (2010) Life and death of a BiP substrate. Semin Cell Dev Biol 21(5):472–478CrossRefPubMedGoogle Scholar
  196. Paatero AO, Kellosalo J, Dunyak BM, Almaliti J, Gestwicki JE, Gerwick WH, Taunton J, Paavilainen VO (2016) Apratoxin kills cells by direct blockade of the Sec61 protein translocation channel. Cell Chem Biol 23(5):561–566.  https://doi.org/10.1016/j.chembiol.2016.04.008
  197. Palade GE (1956) The endoplasmic reticulum. J Biophys Biochem Cytol 2(4 Suppl):85–98CrossRefPubMedPubMedCentralGoogle Scholar
  198. Palade GE, Porter KR (1954) Studies on the endoplasmic reticulum. J Exp Med 100(6):641–656.  https://doi.org/10.1084/jem.100.6.641CrossRefPubMedPubMedCentralGoogle Scholar
  199. Panzner S, Dreier L, Hartmann E, Kostka S, Rapoport TA (1995) Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81(4):561–570CrossRefPubMedGoogle Scholar
  200. Park E, Rapoport TA (2011) Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 473(7346):239–242CrossRefPubMedPubMedCentralGoogle Scholar
  201. Park E, Rapoport TA (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu Rev Biophys 41(1):21–40.  https://doi.org/10.1146/annurev-biophys-050511-102312CrossRefPubMedGoogle Scholar
  202. Park E, Menetret J-F, Gumbart JC, Ludtke SJ, Li W, Whynot A, Rapoport TA, Akey CW (2014) Structure of the SecY channel during initiation of protein translocation. Nature 506(7486):102–106.  https://doi.org/10.1038/nature12720. http://www.nature.com/nature/journal/v506/n7486/abs/nature12720.html#supplementary-information
  203. Pataki CI, Rodrigues J, Zhang L, Qian J, Efron B, Hastie T, Elias JE, Levitt M, Kopito RR (2018) Proteomic analysis of monolayer-integrated proteins on lipid droplets identifies amphipathic interfacial α-helical membrane anchors. Proc Natl Acad Sci 115(35):E8172–E8180.  https://doi.org/10.1073/pnas.1807981115CrossRefPubMedGoogle Scholar
  204. Petrescu A-J, Milac A-L, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14(2):103–114.  https://doi.org/10.1093/glycob/cwh008CrossRefPubMedGoogle Scholar
  205. Pfeffer S, Brandt F, Hrabe T, Lang S, Eibauer M, Zimmermann R, Förster F (2012) Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes. Structure 20(9):1508–1518.  https://doi.org/10.1016/j.str.2012.06.010CrossRefPubMedGoogle Scholar
  206. Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, Becker T, Beckmann R, Zimmermann R, Förster F (2014) Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nat Commun 5.  https://doi.org/10.1038/ncomms4072
  207. Pfeffer S, Burbaum L, Unverdorben P, Pech M, Chen Y, Zimmermann R, Beckmann R, Förster F (2015) Structure of the native Sec61 protein-conducting channel. Nat Commun 6.  https://doi.org/10.1038/ncomms9403
  208. Pfeffer S, Dudek J, Zimmermann R, Förster F (2016) Organization of the native ribosome–translocon complex at the mammalian endoplasmic reticulum membrane. Biochim Biophys Acta (BBA)-Gen Subj 1860(10):2122–2129. http://dx.doi.org/10.1016/j.bbagen.2016.06.024
  209. Pfeffer S, Dudek J, Schaffer M, Ng BG, Albert S, Plitzko JM, Baumeister W, Zimmermann R, Freeze HH, Engel BD, Förster F (2017) Dissecting the molecular organization of the translocon-associated protein complex. Nat Commun 8:14516.  https://doi.org/10.1038/ncomms14516. http://www.nature.com/articles/ncomms14516#supplementary-information
  210. Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17(2):69–82.  https://doi.org/10.1038/nrm.2015.8CrossRefPubMedGoogle Scholar
  211. Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA (1998) Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94(6):795–807CrossRefPubMedGoogle Scholar
  212. Plumb R, Zhang Z-R, Appathurai S, Mariappan M (2015) A functional link between the co-translational protein translocation pathway and the UPR. eLife 4:e07426.  https://doi.org/10.7554/elife.07426
  213. Ponsero AJ, Igbaria A, Darch MA, Miled S, Outten CE, Winther JR, Palais G, D’Autréaux B, Delaunay-Moisan A, Toledano MB (2017) Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip. Mol Cell 67(6):962–973.e965.  https://doi.org/10.1016/j.molcel.2017.08.012CrossRefPubMedPubMedCentralGoogle Scholar
  214. Pool MR (2009) A trans-membrane segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase. J Cell Biol 185(5):889–902.  https://doi.org/10.1083/jcb.200807066CrossRefPubMedPubMedCentralGoogle Scholar
  215. Potter MD, Seiser RM, Nicchitta CV (2001) Ribosome exchange revisited: a mechanism for translation-coupled ribosome detachment from the ER membrane. Trends Cell Biol 11(3):112–115CrossRefPubMedGoogle Scholar
  216. Puhka M, Vihinen H, Joensuu M, Jokitalo E (2007) Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J Cell Biol 179(5):895–909.  https://doi.org/10.1083/jcb.200705112CrossRefPubMedPubMedCentralGoogle Scholar
  217. Puhka M, Joensuu M, Vihinen H, Belevich I, Jokitalo E (2012) Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol Biol Cell 23(13):2424–2432.  https://doi.org/10.1091/mbc.E10-12-0950CrossRefPubMedPubMedCentralGoogle Scholar
  218. Rapoport TA, Li L, Park E (2017) Structural and mechanistic insights into protein translocation. Annu Rev Cell Dev Biol 33(1):369–390.  https://doi.org/10.1146/annurev-cellbio-100616-060439CrossRefPubMedGoogle Scholar
  219. Reid DW, Chen Q, Tay ASL, Shenolikar S, Nicchitta CV (2014) The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell 158(6):1362–1374.  https://doi.org/10.1016/j.cell.2014.08.012CrossRefPubMedPubMedCentralGoogle Scholar
  220. Reithinger JH, Kim JEH, Kim H (2013) Sec62 protein mediates membrane insertion and orientation of moderately hydrophobic signal anchor proteins in the endoplasmic reticulum (ER). J Biol Chem 288(25):18058–18067.  https://doi.org/10.1074/jbc.M113.473009CrossRefPubMedPubMedCentralGoogle Scholar
  221. Roy A, Wonderlin WF (2003) The permeability of the endoplasmic reticulum is dynamically coupled to protein synthesis. J Biol Chem 278(7):4397–4403CrossRefPubMedGoogle Scholar
  222. Ruiz-Canada C, Kelleher DJ, Gilmore R (2009) Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136(2):272–283.  https://doi.org/10.1016/j.cell.2008.11.047CrossRefPubMedPubMedCentralGoogle Scholar
  223. Rychkova A, Warshel A (2013) Exploring the nature of the translocon-assisted protein insertion. Proc Natl Acad Sci 110(2):495–500.  https://doi.org/10.1073/pnas.1220361110CrossRefPubMedGoogle Scholar
  224. Sadlish H, Pitonzo D, Johnson AE, Skach WR (2005) Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat Struct Mol Biol 12(10):870–878CrossRefPubMedGoogle Scholar
  225. Sammels E, Parys JB, Missiaen L, De Smedt H, Bultynck G (2010) Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 47(4):297–314CrossRefPubMedGoogle Scholar
  226. Sato T, Sako Y, Sho M, Momohara M, Suico Mary A, Shuto T, Nishitoh H, Okiyoneda T, Kokame K, Kaneko M, Taura M, Miyata M, Chosa K, Koga T, Morino-Koga S, Wada I, Kai H (2012) STT3B-dependent posttranslational N-glycosylation as a surveillance system for secretory protein. Mol Cell 47(1):99–110.  https://doi.org/10.1016/j.molcel.2012.04.015CrossRefPubMedGoogle Scholar
  227. Savitz AJ, Meyer DI (1990) Identification of a ribosome receptor in the rough endoplasmic reticulum. Nature 346(6284):540–544CrossRefPubMedGoogle Scholar
  228. Savitz AJ, Meyer DI (1993) 180-kD ribosome receptor is essential for both ribosome binding and protein translocation. J Cell Biol 120(4):853–863CrossRefPubMedGoogle Scholar
  229. Schäuble N, Lang S, Jung M, Cappel S, Schorr S, Ulucan O, Linxweiler J, Dudek J, Blum R, Helms V, Paton AW, Paton JC, Cavalie A, Zimmermann R (2012) BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J 31(15):3282–3296CrossRefPubMedPubMedCentralGoogle Scholar
  230. Schäuble N, Cavalié A, Zimmermann R, Jung M (2014) Interaction of Pseudomonas aeruginosa Exotoxin A with the human Sec61 complex suppresses passive calcium efflux from the endoplasmic reticulum. Channels (Austin, Tex) 8(1):76–83.  https://doi.org/10.4161/chan.26526CrossRefGoogle Scholar
  231. Schekman R (2002) SEC mutants and the secretory apparatus. Nat Med 8(10):1055–1058CrossRefPubMedGoogle Scholar
  232. Schibich D, Gloge F, Pöhner I, Björkholm P, Wade RC, von Heijne G, Bukau B, Kramer G (2016) Global profiling of SRP interaction with nascent polypeptides. Nature 536(7615):219–223.  https://doi.org/10.1038/nature19070
  233. Schlenstedt G, Gudmundsson GH, Boman HG, Zimmermann R (1990) A large presecretory protein translocates both cotranslationally, using signal recognition particle and ribosome, and posttranslationally, without these ribonucleoparticles, when synthesized in the presence of mammalian microsomes. J Biol Chem 265(23):13960–13968PubMedGoogle Scholar
  234. Schorr S, Klein M-C, Gamayun I, Melnyk A, Jung M, Schäuble N, Wang Q, Hemmis B, Bochen F, Greiner M, Lampel P, Urban SK, Hassdenteufel S, Dudek J, Chen X-Z, Wagner R, Cavalié A, Zimmermann R (2015) Co-chaperone specificity in gating of the polypeptide conducting channel in the membrane of the human endoplasmic reticulum. J Biol Chem 290(30):18621–18635.  https://doi.org/10.1074/jbc.M115.636639CrossRefPubMedPubMedCentralGoogle Scholar
  235. Schrul B, Kopito RR (2016) Peroxin-dependent targeting of a lipid-droplet-destined membrane protein to ER subdomains. Nat Cell Biol 18:740.  https://doi.org/10.1038/ncb3373. https://www.nature.com/articles/ncb3373#supplementary-information
  236. Schuldiner M, Metz J, Schmid V, Denic V, Rakwalska M, Schmitt HD, Schwappach B, Weissman JS (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134(4):634–645CrossRefPubMedPubMedCentralGoogle Scholar
  237. Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73:79–94.  https://doi.org/10.1007/s00018-015-2052-6CrossRefPubMedGoogle Scholar
  238. Seppälä S, Slusky JS, Lloris-Garcerá P, Rapp M, von Heijne G (2010) Control of membrane protein topology by a single C-terminal residue. Science 328(5986):1698–1700.  https://doi.org/10.1126/science.1188950CrossRefPubMedGoogle Scholar
  239. Shao S, Hegde RS (2011) A calmodulin-dependent translocation pathway for small secretory proteins. Cell 147(7):1576–1588CrossRefPubMedPubMedCentralGoogle Scholar
  240. Sharma A, Mariappan M, Appathurai S, Hegde RS (2010) In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol Biol (Clifton, NJ) 619:339–363.  https://doi.org/10.1007/978-1-60327-412-8_20CrossRefGoogle Scholar
  241. Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126(3):435–439CrossRefPubMedGoogle Scholar
  242. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA (2010) Mechanisms determining the morphology of the peripheral ER. Cell 143(5):774–788CrossRefPubMedPubMedCentralGoogle Scholar
  243. Shim S-H (2017) Cell imaging: an intracellular dance visualized. Nature advance online publication.  https://doi.org/10.1038/nature22500
  244. Shrimal S, Cherepanova NA, Gilmore R (2015) Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 41:71–78.  https://doi.org/10.1016/j.semcdb.2014.11.005CrossRefPubMedGoogle Scholar
  245. Shrimal S, Cherepanova NA, Gilmore R (2017) DC2 and KCP2 mediate the interaction between the oligosaccharyltransferase and the ER translocon. J Cell Biol.  https://doi.org/10.1083/jcb.201702159
  246. Shurtleff MJ, Itzhak DN, Hussmann JA, Schirle Oakdale NT, Costa EA, Jonikas M, Weibezahn J, Popova KD, Jan CH, Sinitcyn P, Vembar SS, Hernandez H, Cox J, Burlingame AL, Brodsky J, Frost A, Borner GHH, Weissman JS (2018) The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. eLife 7:e37018.  https://doi.org/10.7554/elife.37018
  247. Simon SM, Blobel G (1991) A protein-conducting channel in the endoplasmic reticulum. Cell 65:371–380CrossRefPubMedGoogle Scholar
  248. Simsek D, Tiu GC, Flynn RA, Byeon GW, Leppek K, Xu AF, Chang HY, Barna M (2017) The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell 169(6):1051–1065.e1018.  https://doi.org/10.1016/j.cell.2017.05.022CrossRefPubMedPubMedCentralGoogle Scholar
  249. Smock RG, Rivoire O, Russ WP, Swain JF, Leibler S, Ranganathan R, Gierasch LM (2010) An interdomain sector mediating allostery in Hsp70 molecular chaperones. Mol Syst Biol 6(1)Google Scholar
  250. Sommer N, Junne T, Kalies K-U, Spiess M, Hartmann E (2013) TRAP assists membrane protein topogenesis at the mammalian ER membrane. Biochim Biophys Acta (BBA)-Mol Cell Res 1833(12):3104–3111. http://dx.doi.org/10.1016/j.bbamcr.2013.08.018
  251. Spang A (2015) Anniversary of the discovery of sec mutants by Novick and Schekman. Mol Biol Cell 26(10):1783–1785.  https://doi.org/10.1091/mbc.E14-11-1511CrossRefPubMedPubMedCentralGoogle Scholar
  252. Spiess M (2014) Protein translocation: the Sec61/SecYEG translocon caught in the act. Curr Biol 24(8):R317–R319.  https://doi.org/10.1016/j.cub.2014.02.051CrossRefPubMedGoogle Scholar
  253. Stefanovic S, Hegde RS (2007) Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128(6):1147–1159CrossRefPubMedGoogle Scholar
  254. Sundaram A, Plumb R, Appathurai S, Mariappan M (2017) The Sec61 translocon limits IRE1α signaling during the unfolded protein response. eLife 6:e27187.  https://doi.org/10.7554/elife.27187
  255. Suzuki J, Kanemaru K, Iino M (2016) Genetically encoded fluorescent indicators for organellar calcium imaging. Biophys J 111(6):1119–1131.  https://doi.org/10.1016/j.bpj.2016.04.054CrossRefPubMedPubMedCentralGoogle Scholar
  256. Tanaka Y, Sugano Y, Takemoto M, Mori T, Furukawa A, Kusakizako T, Kumazaki K, Kashima A, Ishitani R, Sugita Y, Nureki O, Tsukazaki T (2015) Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Rep 13(8):1561–1568.  https://doi.org/10.1016/j.celrep.2015.10.025CrossRefPubMedGoogle Scholar
  257. Terasaki M, Shemesh T, Kasthuri N, Klemm RW, Schalek R, Hayworth KJ, Hand AR, Yankova M, Huber G, Lichtman JW, Rapoport TA, Kozlov MM (2013) Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154(2):285–296.  https://doi.org/10.1016/j.cell.2013.06.031CrossRefPubMedPubMedCentralGoogle Scholar
  258. Tidow H, Nissen P (2013) Structural diversity of calmodulin binding to its target sites. FEBS J 280(21):5551–5565.  https://doi.org/10.1111/febs.12296CrossRefPubMedGoogle Scholar
  259. Trueman SF, Mandon EC, Gilmore R (2011) Translocation channel gating kinetics balances protein translocation efficiency with signal sequence recognition fidelity. Mol Biol Cell 22(17):2983–2993.  https://doi.org/10.1091/mbc.E11-01-0070CrossRefPubMedPubMedCentralGoogle Scholar
  260. Trueman SF, Mandon EC, Gilmore R (2012) A gating motif in the translocation channel sets the hydrophobicity threshold for signal sequence function. J Cell Biol 199(6):907–918.  https://doi.org/10.1083/jcb.201207163CrossRefPubMedPubMedCentralGoogle Scholar
  261. Tsukazaki T, Mori H, Fukai S, Ishitani R, Mori T, Dohmae N, Perederina A, Sugita Y, Vassylyev DG, Ito K, Nureki O (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988.  https://doi.org/10.1038/nature07421. https://www.nature.com/articles/nature07421#supplementary-information
  262. Tyedmers J, Lerner M, Wiedmann M, Volkmer J, Zimmermann R (2003) Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum. EMBO Rep 4(5):505–510CrossRefPubMedPubMedCentralGoogle Scholar
  263. Ueno T, Tanaka K, Kaneko K, Taga Y, Sata T, Irie S, Hattori S, Ogawa-Goto K (2010) Enhancement of procollagen biosynthesis by p180 through augmented ribosome association on the endoplasmic reticulum in response to stimulated secretion. J Biol Chem 285(39):29941–29950.  https://doi.org/10.1074/jbc.M109.094607CrossRefPubMedPubMedCentralGoogle Scholar
  264. Ueno T, Kaneko K, Sata T, Hattori S, Ogawa-Goto K (2011) Regulation of polysome assembly on the endoplasmic reticulum by a coiled-coil protein, p180. Nucl Acids Res. Advance online publication.  https://doi.org/10.1093/nar/gkr1197
  265. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E, Lippincott-Schwartz J (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–167.  https://doi.org/10.1038/nature22369. https://www.nature.com/articles/nature22369#supplementary-information
  266. Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA (2004) X-ray structure of a protein-conducting channel. Nature 427(6969):36–44CrossRefPubMedGoogle Scholar
  267. Vilardi F, Lorenz H, Dobberstein B (2011) WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane. J Cell Sci 124(8):1301–1307.  https://doi.org/10.1242/jcs.084277CrossRefPubMedPubMedCentralGoogle Scholar
  268. Voeltz G, Rolls M, Rapoport T (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3(10):944–950.  https://doi.org/10.1093/embo-reports/kvf202CrossRefPubMedPubMedCentralGoogle Scholar
  269. Voigt S, Jungnickel B, Hartmann E, Rapoport TA (1996) Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J Cell Biol 134(1):25–35.  https://doi.org/10.1083/jcb.134.1.25CrossRefPubMedGoogle Scholar
  270. Voigt F, Zhang H, Cui XA, Triebold D, Liu AX, Eglinger J, Lee ES, Chao JA, Palazzo AF (2017) Single-molecule quantification of translation-dependent association of mRNAs with the endoplasmic reticulum. Cell Rep 21(13):3740–3753.  https://doi.org/10.1016/j.celrep.2017.12.008CrossRefPubMedGoogle Scholar
  271. von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909.  https://doi.org/10.1038/nrm2063. https://www.nature.com/articles/nrm2063#supplementary-information
  272. von Heijne G, Gavel Y (1988) Topogenic signals in integral membrane proteins. Eur J Biochem 174(4):671–678.  https://doi.org/10.1111/j.1432-1033.1988.tb14150.xCrossRefGoogle Scholar
  273. von Heijne G (1989) Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341(6241):456–458.  https://doi.org/10.1038/341456a0CrossRefGoogle Scholar
  274. Voorhees RM, Hegde RS (2015) Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. eLife 4:e07975.  https://doi.org/10.7554/elife.07975
  275. Voorhees RM, Hegde RS (2016a) Structure of the Sec61 channel opened by a signal sequence. Science 351(6268):88–91.  https://doi.org/10.1126/science.aad4992CrossRefPubMedPubMedCentralGoogle Scholar
  276. Voorhees RM, Hegde RS (2016b) Toward a structural understanding of co-translational protein translocation. Curr Opin Cell Biol 41:91–99.  https://doi.org/10.1016/j.ceb.2016.04.009CrossRefPubMedGoogle Scholar
  277. Voorhees RM, Fernández IS, Scheres SHW, Hegde RS (2014) Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157(7):1632–1643.  https://doi.org/10.1016/j.cell.2014.05.024
  278. Wada I, Rindress D, Cameron PH, Ou W-J, Doherty JJ, Louvard D, Bell AW, Dignard D, Thomas DY, Bergeron JJM (1991) SSRa and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 266(29):19599–19610PubMedGoogle Scholar
  279. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086.  https://doi.org/10.1126/science.1209038CrossRefPubMedGoogle Scholar
  280. Wang S, Kaufman RJ (2012) The impact of the unfolded protein response on human disease. J Cell Biol 197(7):857–867.  https://doi.org/10.1083/jcb.201110131CrossRefPubMedPubMedCentralGoogle Scholar
  281. Wang F, Chan C, Weir NR, Denic V (2014) The Get1/2 transmembrane complex is an endoplasmic-reticulum membrane protein insertase. Nature 512(7515):441–444.  https://doi.org/10.1038/nature13471. http://www.nature.com/nature/journal/v512/n7515/abs/nature13471.html#supplementary-information
  282. Wang Q-C, Zheng Q, Tan H, Zhang B, Li X, Yang Y, Yu J, Liu Y, Chai H, Wang X, Sun Z, Wang J-Q, Zhu S, Wang F, Yang M, Guo C, Wang H, Zheng Q, Li Y, Chen Q, Zhou A, Tang T-S (2016) TMCO1 is an ER Ca2+ load-activated Ca2+ channel. Cell 165(6):1454–1466.  https://doi.org/10.1016/j.cell.2016.04.051CrossRefPubMedGoogle Scholar
  283. Weihofen A, Binns K, Lemberg MK, Ashman K, Martoglio B (2002) Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296(5576):2215–2218CrossRefPubMedGoogle Scholar
  284. Westrate LM, Lee JE, Prinz WA, Voeltz GK (2015) Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 84(1):791–811.  https://doi.org/10.1146/annurev-biochem-072711-163501CrossRefPubMedGoogle Scholar
  285. White SH, von Heijne G (2008) How translocons select transmembrane helices. Annu Rev Biophys 37(1):23–42.  https://doi.org/10.1146/annurev.biophys.37.032807.125904CrossRefPubMedGoogle Scholar
  286. Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, Locher KP (2018) Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science 359(6375):545–550.  https://doi.org/10.1126/science.aar5140CrossRefPubMedGoogle Scholar
  287. Wirth A, Jung M, Bies C, Frien M, Tyedmers J, Zimmermann R, Wagner R (2003) The Sec61p complex is a dynamic precursor activated channel. Mol Cell 12(1):261–268CrossRefPubMedGoogle Scholar
  288. Wu X, Cabanos C, Rapoport TA (2018) Structure of the post-translational protein translocation machinery of the ER membrane. Nature.  https://doi.org/10.1038/s41586-018-0856-x
  289. Xue S, Tian S, Fujii K, Kladwang W, Das R, Barna M (2015) RNA regulons in Hox 5[prime] UTRs confer ribosome specificity to gene regulation. Nature 517(7532):33–38.  https://doi.org/10.1038/nature14010. http://www.nature.com/nature/journal/v517/n7532/abs/nature14010.html#supplementary-information
  290. Yabal M, Brambillasca S, Soffientini P, Pedrazzini E, Borgese N, Makarow M (2003) Translocation of the C terminus of a tail-anchored protein across the endoplasmic reticulum membrane in yeast mutants defective in signal peptide-driven translocation. J Biol Chem 278(5):3489–3496.  https://doi.org/10.1074/jbc.M210253200CrossRefPubMedGoogle Scholar
  291. Yamaguchi A, Hori O, Stern DM, Hartmann E, Ogawa S, Tohyama M (1999) Stress-associated endoplasmic reticulum protein 1 (Serp1)/ribosome-associated membrane protein 4 (Ramp4) stabilizes membrane proteins during stress and facilitates subsequent glycosylation. J Cell Biol 147(6):1195–1204.  https://doi.org/10.1083/jcb.147.6.1195CrossRefPubMedPubMedCentralGoogle Scholar
  292. Yamamoto Y, Sakisaka T (2012) Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Mol Cell 48(3):387–397.  https://doi.org/10.1016/j.molcel.2012.08.028CrossRefPubMedGoogle Scholar
  293. Yanagitani K, Kimata Y, Kadokura H, Kohno K (2011) Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA. Science 331(6017):586–589.  https://doi.org/10.1126/science.1197142CrossRefPubMedGoogle Scholar
  294. Yu YH, Sabatini DD, Kreibich G (1990) Antiribophorin antibodies inhibit the targeting to the ER membrane of ribosomes containing nascent secretory polypeptides. J Cell Biol 111(4):1335–1342.  https://doi.org/10.1083/jcb.111.4.1335CrossRefPubMedGoogle Scholar
  295. Zehner M, Marschall Andrea L, Bos E, Schloetel J-G, Kreer C, Fehrenschild D, Limmer A, Ossendorp F, Lang T, Koster Abraham J, Dübel S, Burgdorf S (2015) The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8+ T cells. Immunity 42(5):850–863.  https://doi.org/10.1016/j.immuni.2015.04.008CrossRefPubMedGoogle Scholar
  296. Zhang H, Hu J (2016) Shaping the endoplasmic reticulum into a social network. Trends Cell Biol. http://dx.doi.org/10.1016/j.tcb.2016.06.002
  297. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci 103(24):9357–9362CrossRefPubMedGoogle Scholar
  298. Zhao L, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18(4):444–452.  https://doi.org/10.1016/j.ceb.2006.06.005CrossRefPubMedGoogle Scholar
  299. Zhao Y, Hu J, Miao G, Qu L, Wang Z, Li G, Lv P, Ma D, Chen Y (2013) Transmembrane protein 208: a novel ER-localized protein that regulates autophagy and ER stress. PLoS ONE 8(5):e64228.  https://doi.org/10.1371/journal.pone.0064228CrossRefPubMedPubMedCentralGoogle Scholar
  300. Zhou H-X, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397.  https://doi.org/10.1146/annurev.biophys.37.032807.125817CrossRefPubMedPubMedCentralGoogle Scholar
  301. Zhu Y, Zhang G, Lin S, Shi J, Zhang H, Hu J (2018) Sec61β facilitates the maintenance of endoplasmic reticulum homeostasis by associating microtubules. Protein Cell 9(7):616–628.  https://doi.org/10.1007/s13238-017-0492-5CrossRefPubMedGoogle Scholar
  302. Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455(7215):936–943CrossRefPubMedGoogle Scholar
  303. Zimmermann R (2016) Components and mechanisms of import, modification, folding, and assembly of immunoglobulins in the endoplasmic reticulum. J Clin Immunol 36(1):5–11.  https://doi.org/10.1007/s10875-016-0250-0CrossRefPubMedGoogle Scholar
  304. Ziska A, Tatzelt J, Dudek J, Paton AW, Paton JC, Zimmermann R, Haßdenteufel S (2019) The signal peptide plus a cluster of positive charges in prion protein dictate chaperone-mediated Sec61 channel gating. Biol Open bio.040691.  https://doi.org/10.1242/bio.040691

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sven Lang
    • 1
    Email author
  • Duy Nguyen
    • 2
  • Stefan Pfeffer
    • 3
    • 4
  • Friedrich Förster
    • 3
    • 5
  • Volkhard Helms
    • 2
  • Richard Zimmermann
    • 1
  1. 1.Competence Center for Molecular MedicineSaarland University Medical SchoolHomburgGermany
  2. 2.Center for BioinformaticsSaarland UniversitySaarbrückenGermany
  3. 3.Department of Molecular Structural BiologyMax-Planck Institute of BiochemistryMartinsriedGermany
  4. 4.ZMBHHeidelbergGermany
  5. 5.Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations