Unravelling Ribosome Function Through Structural Studies

  • Abid Javed
  • Elena V. OrlovaEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 93)


Ribosomes are biological nanomachine that synthesise all proteins within a cell. It took decades to reveal the architecture of this essential cellular component. To understand the structure-function relationship of this nanomachine needed the utilisisation of different biochemical, biophysical and structural techniques. Structural studies combined with mutagenesis of the different ribosomal complexes comprising various RNAs and proteins enabled us to understand how this machine works inside a cell. Nowadays quite a number of ribosomal structures were published that confirmed biochemical studies on particular steps of protein synthesis by the ribosome. Four major steps were identified: initiation, elongation, termination and recycling. These steps lead us to the important question how the ribosome function can be regulated. Advances in technology for cryo electron microscopy: sample preparations, image recording, developments in algorithms for image analysis and processing significantly helped in revelation of structural details of the ribosome. We now have a library of ribosome structures from prokaryotes to eukaryotes that enable us to understand the complex mechanics of this nanomachine. As this structural library continues to grow, we gradually improve our understanding of this process and how it can be regulated and how the specific ribosomes can be stalled or activated, or completely disabled. This article provides a comprehensive overview of ribosomal structures that represent structural snapshots of the ribosome at its different functional states. Better understanding rises more particular questions that have to be addressed by determination structures of more complexes.

Synopsis: Structural biology of the ribosome.


Ribosome Function Structure X-ray cryoEM Nascent chain 



A. J. is supported by BBSRC grant BB/R002622/1. We would like to thank Dr. D. Houldershaw for the computational assistance in structural analysis and software used.

Competing Financial Interests

The authors declare no competing financial interests.


  1. Adio S, Senyushkina T, Peske F, Fischer N et al (2015) Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome. Nat Commun 6:7442. Scholar
  2. Agrawal RK, Spahn CM, Penczek P et al (2000) Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 150(3):447–460CrossRefPubMedPubMedCentralGoogle Scholar
  3. Agrawal RK, Penczek P, Grassucci RA et al (1996) Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science 271(5251):1000–1002CrossRefPubMedGoogle Scholar
  4. Arenz S, Bock LV, Graf M et al (2016) A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nat Commun 7.
  5. Ban N, Freeborn B, Nissen P et al (1998) A 9 A resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93(7):1105–1115CrossRefPubMedGoogle Scholar
  6. Ban N, Nissen P, Hansen J et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920CrossRefPubMedGoogle Scholar
  7. Bashan A, Agmon I, Zarivach R et al (2003) Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol Cell 1:91–102CrossRefGoogle Scholar
  8. Bashan A, Yonath A (2008) Correlating ribosome function with high-resolution structures. Trends Microbiol 16(7):326–335CrossRefPubMedGoogle Scholar
  9. Beckmann R, Bubeck D, Grassucci RA, et al (1997) Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278 (5346)Google Scholar
  10. Belardinelli R, Sharma H, Caliskan N et al (2016) Choreography of molecular movements during ribosome progression along mRNA. Nat Struct Mol Biol 23:342–348CrossRefPubMedGoogle Scholar
  11. Bernabeu C, Lake JA (1982) Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. Proc Natl Acad Sci USA 79:3111–3115CrossRefPubMedGoogle Scholar
  12. Bhushan S, Hoffmann T, Seidelt B et al (2011) SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLoS Biol 9 (1)Google Scholar
  13. Brosius J, Palmer ML, Kennedy PJ et al (1978) Complete nucleotide sequence of 16S ribosomal RNA gene from Escherichia coli. Proc Nat Acad Sci USA 75:4801–4805CrossRefPubMedGoogle Scholar
  14. Buhr F, Jha S, Thommen M et al (2016) Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell 61:341–351CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cabrita LD, Cassaignau AM, Launay HM et al (2016) A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding. Nat Struct Mol Biol 23(4):278–285CrossRefPubMedPubMedCentralGoogle Scholar
  16. Carter AP, Clemens WM, Brodersen DE et al (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407(6802):340–348CrossRefPubMedGoogle Scholar
  17. Chen B, Kaledhonkar S, Sun M et al (2015) Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. Structure 23(6):1097–1105CrossRefPubMedPubMedCentralGoogle Scholar
  18. Christodoulou J, Larsson G, Fucini P et al (2004) Heteronuclear NMR investigations of dynamic regions of intact Escherichia coli ribosomes. Proc Natl Acad Sci USA 101(30):10949–10954CrossRefPubMedGoogle Scholar
  19. Clarke TF, Clark PL (2008) Rare codons cluster. PLoS ONE 3:e3412CrossRefPubMedPubMedCentralGoogle Scholar
  20. Clore GM, Gronenborn AM (1998) New methods of structure refinement for macromolecular structure determination by NMR. Proc Natl Acad Sci USA 95(11):5891–5898CrossRefPubMedGoogle Scholar
  21. Cornish PV, Ermolenko DN, Noller HF et al (2008) Spontaneous intersubunit rotation in single ribosomes. Mol Cell 30(5):578–588CrossRefPubMedPubMedCentralGoogle Scholar
  22. Deckert A, Waudby CA, Wlodarski T et al (2016) Structural characterization of the interaction of α-synuclein nascent chains with the ribosomal surface and trigger factor. Proc Natl Acad Sci USA 113(18):5012–5017CrossRefPubMedGoogle Scholar
  23. Delius H, Traut RR, Moore PB et al (1968) Studies on purified E.coli ribosomal proteins. Molecular Genetics, Springer-Verlag, Berlin, pp 26–45Google Scholar
  24. Demo G, Rasouly A, Vasilyev N et al (2017a) Structure of RNA polymerase bound to ribosomal 30S subunit. Elife. 6:e28560CrossRefPubMedPubMedCentralGoogle Scholar
  25. Demo G, Svidritskiy E, Madireddy R et al (2017b) Mechanism of ribosome rescue by ArfA and RF2. Elife. 6Google Scholar
  26. Diaconu M, Kothe U, Schluenzen F et al (2005) Structural basis for the function of the ribosomal L7/L12 stalk in factor binding and GTPase activation. Cell 121(7):991–1004CrossRefPubMedGoogle Scholar
  27. Doerfel LK, Wohlgemuth I, Kubyshkin V et al (2015) Entropic contribution of elongation factor P to proline positioning at the catalytic center of the ribosome. J Am Chem Soc 137:12997–13006CrossRefPubMedGoogle Scholar
  28. Dubochet J, Adrian M, Chang JJ et al (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21(2):129–228CrossRefPubMedGoogle Scholar
  29. Dunkle JA, Wang L, Feldman MB et al (2011) Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332(6032):981–984CrossRefPubMedPubMedCentralGoogle Scholar
  30. Elad N, Clare D, Saibil HR et al (2008) Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections. J Struct Biol 162:108–120CrossRefPubMedGoogle Scholar
  31. Eyal Z, Matzov D, Krupkin M et al (2015) Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc Natl Acad Sci 112(43):5805–5814CrossRefGoogle Scholar
  32. Fischer N, Konevega AL, Wintermeyer W et al (2010) Ribosome dynamics and tRNA movement by time-resolved electron microscopy. Nature 466(7304):329–33CrossRefPubMedGoogle Scholar
  33. Frank J, Penczek P, Grassucci RA et al (1991) Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice: the distribution of ribosomal RNA. J Cell Biol 115(3):597–605CrossRefPubMedGoogle Scholar
  34. Frank J (2017) Time-resolved cryo-electron microscopy: recent progress. J Struct Biol 3:303–306CrossRefGoogle Scholar
  35. Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Oxford University Press: Chapter 2:20–40Google Scholar
  36. Frank J, Agrawal RK (1998) The movement of tRNA through the ribosome. Biophys J 74(1):589–594CrossRefPubMedPubMedCentralGoogle Scholar
  37. Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406(6793):318–322CrossRefPubMedGoogle Scholar
  38. Frank J, Zhu J, Penczek P et al (1995) A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376(6539):441–444Google Scholar
  39. Fu Z, Kaledhonkar S, Borg A et al (2016) Key intermediates in ribosome recycling visualized by time-resolved cryoelectron microscopy. Structure 24(12):2092–2101CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gabashvili IS, Agrawal RK, Spahn CM et al (2000) Solution structure of the E. coli 70S ribosome at 11.5 A resolution. Cell 100(5):537–549Google Scholar
  41. Gabashvili IS, Gregory ST, Valle M et al (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 8(1):181–188CrossRefPubMedGoogle Scholar
  42. Gao H, Zhou Z, Rawat U et al (2007) RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129(5):929–941CrossRefPubMedGoogle Scholar
  43. Gao N, Zavialov AV, Li W et al (2005) Mechanism for the disassembly for the posttermination complex inferred from cryo-EM studies. Mol Cell 18(6):663–674CrossRefPubMedGoogle Scholar
  44. Goyal A, Belardinelli R, Rodnina MV (2017) Non-canonical binding site for bacterial initiation factor 3 on the large ribosomal subunit. Cell Rep. 20(13):3113–3122CrossRefPubMedGoogle Scholar
  45. Graf M, Huter P, Maracci C et al (2018) Visualization of translation termination intermediates trapped by the Apidaecin 137 peptide during RF3-mediated recycling RF1. Nat Comm. 9(1):3053CrossRefGoogle Scholar
  46. Green R, Noller HF (1997) Ribosomes and translation. Annu Rev Biochem 66:679–716CrossRefPubMedGoogle Scholar
  47. Guo Z, Noller HF (2012) Rotation of the head of the 30S ribosomal subunit during mRNA translocation. Proc Natl Acad Sci 109:20391–20394CrossRefPubMedGoogle Scholar
  48. Hope H, Frolow F, Bohlen K et al (1989) Cryocrystallography of ribosomal particles. Acta Crystallogr Sect B 45:190–199CrossRefGoogle Scholar
  49. Harms J, Schluenzen F, Zarivach R et al (2001) High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107(5):679–688CrossRefPubMedGoogle Scholar
  50. Henderson R (2015) Overview and future of single particle electron cryomicroscopy. Arch Biochem Biophys 581:19–24CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hentschel J, Burnside C, Mignot I et al (2017) The complete structure of the Mycobacterium smegmatis 70S Ribosome. Cell. Rep. 20(1):149–160CrossRefPubMedGoogle Scholar
  52. Herr W, Noller HF (1975) A fragment of 23S RNA containing a nucleotide sequence complementary to a region of 5S RNA. FEBS Lett 53:248–252CrossRefPubMedGoogle Scholar
  53. Huter P, Arenz S, Bock LV et al (2017a) Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Mol Cell 68:515–527.e516CrossRefPubMedGoogle Scholar
  54. Huter P, Muller C, Beckert B et al (2017b) Structural basis for ArfA-RF2-mediated translation termination on mRNAs lacking stop codons. Nature 541(7638):546–549CrossRefPubMedGoogle Scholar
  55. Ingolia NT, Hussmann JA, Weissman JS (2019) Ribosome Profiling: Global views of Translation. Cold Spring Harb Perspect Biol 11(5) pii:a032698Google Scholar
  56. James NR, Brown A, Gordiyenko Y et al (2016) Translational termination without a stop codon. Science 354(6318):1437–1440CrossRefPubMedPubMedCentralGoogle Scholar
  57. Javed A, Christodoulou J, Cabrita et al (2017) The ribosome and its role in protein folding: looking through a magnifying glass. Acta Cryst D Struc Biol 73(Pt6):509–521Google Scholar
  58. Javed A, Cabrita D. Lisa, Cassaignau ME A, Wlodarski T, Christodoulou J, Orlova EV (2019) Visualising nascent chain dynamics at the ribosome exit tunnel by cryo-electron microscopy. BioRxiv.
  59. Jin H, Kelley AC, Ramakrishnan V (2011) Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc Natl Acad Sci 108(38):15798–15803CrossRefPubMedGoogle Scholar
  60. Julian P, Milon P, Agirrezabala X et al (2011) The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli. PLoS Biol 9(7):e1001095CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kaminishi T, Wilson DN, Takemoto C et al (2007) A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure 15(3):289–297CrossRefPubMedGoogle Scholar
  62. Khusainov I, Vicens Q, Bochler A et al (2016) Structure of the 70S ribosome from human pathogen Staphylococcus aureus. Nuc Acid Res. 44(21):10491–10504Google Scholar
  63. Kohler R, Mooney RA, Mills DJ et al (2018) Architecture of a transcribing-translating expressome. Science 356(6334):194–197CrossRefGoogle Scholar
  64. Korostelev A, Asahara H, Lancaster L et al (2008) Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci 105(50):19684–19690CrossRefPubMedGoogle Scholar
  65. Korostelev A, Trakhanov S, Laurberg M et al (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126(6):1065–1077CrossRefPubMedGoogle Scholar
  66. Korostelev A, Zhu J, Asahara H et al (2010) Recognition of the amber UAG stop codon by release factor RF1. EMBO J 29:2577–2585CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kothe U, Widen HJ, Mohr D et al (2004) Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/L12 on the ribosome. J Mol Biol 336(5):1011–21CrossRefPubMedGoogle Scholar
  68. Lake JA (1978) Protein synthesis. Science 200(4339):305–306CrossRefPubMedGoogle Scholar
  69. Laurberg M, Asahara H, Korostelev A et al (2008) Structural basis for translation termination on the 70S ribosome. Nature 454:852–857CrossRefPubMedGoogle Scholar
  70. Li W. McClure K, Montabana E et al (2018) Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. bioRxiv.
  71. Ling C, Ermolenko DN (2016) Structural insights into ribosome translocation. Wiley Interdiscip Rev RNA. 5:620–36CrossRefGoogle Scholar
  72. Liu Q, Frederick K (2016) Intersubunit Bridges of the Bacterial Ribosome. J Mol Biol 428(10 Pt B): 2146–2164Google Scholar
  73. Lopez-Alonso JP, Fabbretti A, Kaminishi T et al (2017) Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways. Nucleic Acids Res 45(4):2179–2187PubMedGoogle Scholar
  74. Loveland AB, Demo G, Grigorieff N et al (2017) Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 546:113–117CrossRefPubMedPubMedCentralGoogle Scholar
  75. Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS (2003) Ribosomal localization of translation initiation factor IF2. RNA 9(8):958–969Google Scholar
  76. Marzi S, Myasnikov AG, Serganov A et al (2007) Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130(6):1019–1031CrossRefPubMedGoogle Scholar
  77. Matadeen R, Patwardhan A, Gowen B et al (1999) The Escherichia coli large ribosomal subunit at 7.5 A resolution. Structure 7 (12):1575–83Google Scholar
  78. McCutcheon JP, Agrawal RK, Philips SM et al (1999) Location of translational initiation factor IF3 on the small ribosomal subunit. Proc Natl Acad Sci 96:4301–4306CrossRefPubMedGoogle Scholar
  79. Melnikov S, Ben-Shem A, Gareau de Loubresse N et al (2012) One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol 19(6):560–567CrossRefPubMedGoogle Scholar
  80. Melnikov S, Manakongtreecheep K, Soll D (2018) Revising the structural diversity of ribosomal proteins across the three domains of life. Mol Biol and Evol. 35(7):1588–1598CrossRefGoogle Scholar
  81. Midgley JEM (1965) Effects of different extraction procedures on the molecular characteristics of bacterial ribosome ribonucleic acid. Biochem Biophys Acta 95:232–243PubMedGoogle Scholar
  82. Milligan RA, Unwin PN (1986) Location of exit channel for nascent protein in 80S ribosome. Nature 319:693–695CrossRefPubMedGoogle Scholar
  83. Moller K, Brimacombe R (1975) Specific cross-linking of proteins S7 and L4 to ribosomal RNA, by UV irradiation of Escherichia coli ribosomal subunits. Mol Gen Genet 141(4):343–345CrossRefPubMedGoogle Scholar
  84. Moore PB (2009) The ribosome returned. J Biol. 8(1):1–8CrossRefGoogle Scholar
  85. Moore PB, Engelman DM (1975) A neutron scattering study of the distribution of protein and RNA in the 30S ribosomal subunit of Escherichia coli. J Mol Biol 91:101–120CrossRefPubMedGoogle Scholar
  86. Moore PB, Traut RR, Noller HF et al (1968) Ribosomal proteins of Escherichia coli. II. Proteins from the 30S subunit. J Mol Biol 31:441–461CrossRefPubMedGoogle Scholar
  87. Myasnikov AG, Marzi S, Simonetti A et al (2005) Conformational transition of initiation factor 2 from the GTP—to-GDP-bound state visualised on the ribosome. Nat Struct Mol Biol 12(12):1145–1149CrossRefPubMedGoogle Scholar
  88. Nilsson OB, Nickson AA, Hollins JJ et al (2017) Cotranslational folding of spectrin domains via partially structured states. Nat Struct Mol Biol 24(3):221–225. Scholar
  89. Nilsson OB, Hedman R, Marino J et al (2015) Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. 12(10):1533–1540CrossRefPubMedPubMedCentralGoogle Scholar
  90. Nissen P, Hansen J, Ban N et al (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289(5481):920–930CrossRefPubMedGoogle Scholar
  91. Noller, H.F. and Herr, W. (1974). Accessibility of 5S rRNA in 50S ribosomal subunits. J Mol Biol 90:181–184Google Scholar
  92. Noeske J, Wasserman MR, Terry DS et al (2015) High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol 22(4):336–341CrossRefPubMedPubMedCentralGoogle Scholar
  93. O’Brien EP, Ciryam P, Vendruscolo M et al (2014) Understanding the influence of codon translation rates on cotranslational protein folding. Acc Chem Res 47:1536–1544CrossRefPubMedGoogle Scholar
  94. Ogle JM, Murphy FV, Tarry MJ et al (2002) Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721–732CrossRefPubMedGoogle Scholar
  95. Ogle JM, Ramakrishnan V (2005) Structural insights into translational fidelity. Annu Rev Biochem 74:129–177CrossRefPubMedGoogle Scholar
  96. Orlova EV (2000) Structural analysis of non-crystalline macromolecules: the ribosome. Acta Crystallogr D Biol Crystallogr 56:1253–8CrossRefPubMedGoogle Scholar
  97. Palade GE (1955) A small particulate component of the cytoplasm. J Biophys Biochem Cytol 1:59–68CrossRefPubMedPubMedCentralGoogle Scholar
  98. Pallesen J, Hashem Y, Korkmaz G et al (2013) Cryo-EM visualization of ribosome in termination complex with apo-RF3 and RF1. Elife 2Google Scholar
  99. Peske F, Rodnina MV, Wintermeyer W (2005) Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell 18(4):403–412CrossRefPubMedGoogle Scholar
  100. Petrov A, Chen J, O’Leary S et al (2012) Single-molecule analysis of translational dynamics. Cold Spring Harb Perspective Biol. 4(9):a011551. Scholar
  101. Polacek N, Mankin AS (2005) The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit Rev Biochem Mol Biol 40(5):285–311CrossRefPubMedGoogle Scholar
  102. Polacek N, Gaynor M, Yassin A et al (2001) Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411:498–501CrossRefPubMedGoogle Scholar
  103. Polikanov YS, Steitz TA, Innis CA (2014) A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat Struct Mol Biol 21(9):787–93CrossRefPubMedPubMedCentralGoogle Scholar
  104. Rawat U, Gao H, Zavialov A et al (2006) Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J Mol Biol 357:1144–1153CrossRefPubMedGoogle Scholar
  105. Rawat UBS, Zavialov AV, Sengupta J et al (2003) A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421:87–90CrossRefPubMedGoogle Scholar
  106. Rodnina MV (2018) Translation in Prokaryotes. Cold Spring Harb Perspect Biol 10(9):1–21CrossRefGoogle Scholar
  107. Santos N, Zhu J, Donohue PJ et al (2013) Crystal structure of the 70S ribosome bound with Q253P mutant form of release factor RF2. Structure 21(7):1258–1263CrossRefPubMedPubMedCentralGoogle Scholar
  108. Savelsbergh A, Katunin VI, Mohr D et al (2003) An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol Cell 11:1517–1523CrossRefPubMedGoogle Scholar
  109. Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461(7268):1234–42CrossRefPubMedGoogle Scholar
  110. Schmeing TM, Voorhees RM, Kelley AC et al (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326(5953):688–694CrossRefPubMedPubMedCentralGoogle Scholar
  111. Seidelt B, Innis CA, Wilson DN et al (2009) Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326(5958):1412–1415CrossRefPubMedPubMedCentralGoogle Scholar
  112. Selmer M, Dunham CM, Murphy FV 4th et al (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313(5795):1935–1942CrossRefPubMedGoogle Scholar
  113. Shaikh TR, Yassin AS, Lu Z et al (2014) Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM. Proc Natl Acad Sci. 111(27):9822–9827Google Scholar
  114. Siller E, DeZwaan DC, Anderson JF et al (2010) Slowing bacterial translation speed enhances eukaryotic protein folding efficiency. J Mol Biol 396:1310–1318CrossRefPubMedGoogle Scholar
  115. Simonetti A, Marzi S, Myasnikov AG et al (2008) Structure of the 30S initiation complex. Nature 455(7211):416–420CrossRefPubMedGoogle Scholar
  116. Sohmen D, Chiba S, Shimokawa-Chiba N et al (2015) Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat Commun 6:6941. Scholar
  117. Spencer PS, Siller E, Anderson JF et al (2012) Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J Mol Biol 422:328–335CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sprink T, Ramrath D, Yamamoto H et al (2016) Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association. Sci Adv. 2(3):e1501502CrossRefPubMedPubMedCentralGoogle Scholar
  119. Stark H, Orlova EV, Rinke-Appel J et al (1997) Arrangement of tRNAs in pre- and posttranslational ribosomes revealed by electron cryomicroscopy. Cell 88:19–28CrossRefPubMedGoogle Scholar
  120. Stark H, Rodnina MV, Wieden HJ et al (2002) Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat Struct Biol 9:849–854PubMedGoogle Scholar
  121. Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9(3):242–253CrossRefPubMedGoogle Scholar
  122. Svidritskiy E, Korostelev A (2018) Conformational control of translation termination on the 70S ribosome. Structure. 26(6):821–828CrossRefPubMedPubMedCentralGoogle Scholar
  123. Taylor MM, Glasgow JE, Storck R (1967) Sedimentation coefficients of RNA from 70S and 80S ribosomes. Proc Natl Acad Sci U S A. 57(1):164–9CrossRefPubMedPubMedCentralGoogle Scholar
  124. Tian P, Steward A, Kudva R et al (2018) Folding pathway of an Ig domain is conserved on and off the ribosome. Proc Natl Acad Sci 115(48):E11284–E11293CrossRefPubMedGoogle Scholar
  125. Tischendorf GW, Zeichhardt H, Stoffler G (1974a) Determination of the location of proteins L14, L17, L18, L19, L22, L23 on the surface of 50S ribosomal subunit of Escherichia coli by immune electron microscopy. Mol Gen Genet 134:187–208CrossRefPubMedGoogle Scholar
  126. Tischendorf GW, Zeichhardt H, Stoffler G (1974b) Location of proteins, S5, S13 and S14 on the surface of the 30S ribosomal subunit from Escherichia coli as determined by immune electron microscopy. Mol Gen Genet 134:209–223CrossRefPubMedGoogle Scholar
  127. Tissieres A, Watson JD (1958) Ribonucleoprotein particles from the Escherichia coli. Nature 182(4638):778–780CrossRefPubMedGoogle Scholar
  128. Tsai CJ, Sauna ZE, Kimchi-Sarfaty C et al (2008) Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol 383:281–291CrossRefPubMedPubMedCentralGoogle Scholar
  129. Valle M, Zavialov A, Li W et al (2003) Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Biol 10:899–906CrossRefPubMedGoogle Scholar
  130. Vesper O, Amitai S, Belitsky M et al (2011) Selective translation of leaderless mRNAs by specialised ribosomes generated by MazF in Escherichia coli. Cell 147(1):147–157CrossRefPubMedPubMedCentralGoogle Scholar
  131. Wasserman MR, Alejo JL, Altman RB et al (2016) Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation. Nat Struct Mol Biol 23:333–341CrossRefPubMedPubMedCentralGoogle Scholar
  132. Weixlbaumer A, Jin H, Neubauer C et al (2008) Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–956CrossRefPubMedPubMedCentralGoogle Scholar
  133. Wilson DN, Arenz S, Beckmann R (2016) Translation regulation via nascent polypeptide-mediated ribosome stalling. Curr Opin Struct Biol 37:123–33CrossRefPubMedGoogle Scholar
  134. Wimberly BT, Brodersen DE, Clemons WM Jr (2000) Structure of the 30S ribosomal subunit. Nature 407(6802):327–339CrossRefPubMedGoogle Scholar
  135. Yonath A, Leonard RK, Wittmann GH (1987) A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science 236:813–6CrossRefPubMedGoogle Scholar
  136. Yu CH, Dang Y, Zhou Z et al (2015) Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell 59:744–754CrossRefPubMedPubMedCentralGoogle Scholar
  137. Yusupov M, Yusupova G, Baucom A et al (2001) Crystal structure of the ribosome at 5.5 A resolution. Science. 292(5518):883–96Google Scholar
  138. Zavialov AV, Hauryliuk VV, Ehrenberg M (2005) Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol Cell 18(6):675–686CrossRefPubMedGoogle Scholar
  139. Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struc Mol Biol. 16(3):274–80CrossRefGoogle Scholar
  140. Zhou J, Lancaster L, Donohue JP et al (2019) Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state. Proc Natl Acad Sci..

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck CollegeLondonUK

Personalised recommendations