Advertisement

The Kai-Protein Clock—Keeping Track of Cyanobacteria’s Daily Life

  • Joost Snijder
  • Ilka Maria AxmannEmail author
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 93)

Abstract

Life has adapted to Earth’s day-night cycle with the evolution of endogenous biological clocks. Whereas these circadian rhythms typically involve extensive transcription-translation feedback in higher organisms, cyanobacteria have a circadian clock, which functions primarily as a protein-based post-translational oscillator. Known as the Kai system, it consists of three proteins KaiA, KaiB, and KaiC. In this chapter, we provide a detailed structural overview of the Kai components and how they interact to produce circadian rhythms of global gene expression in cyanobacterial cells. We discuss how the circadian oscillation is coupled to gene expression, intertwined with transcription-translation feedback mechanisms, and entrained by input from the environment. We discuss the use of mathematical models and summarize insights into the cyanobacterial circadian clock from theoretical studies. The molecular details of the Kai system are well documented for the model cyanobacterium Synechococcus elongatus, but many less understood varieties of the Kai system exist across the highly diverse phylum of Cyanobacteria. Several species contain multiple kai-gene copies, while others like marine Prochlorococcus strains have a reduced kaiBC-only system, lacking kaiA. We highlight recent findings on the genomic distribution of kai genes in Bacteria and Archaea and finally discuss hypotheses on the evolution of the Kai system.

Keywords

Circadian clock Biochemical oscillator KaiC KaiB KaiA PTO TTFL Cyanobacteria Synechococcus elongatus Prochlorococcus 

References

  1. Abe J, Hiyama TB, Mukaiyama A, Son S, Mori T, Saito S, Osako M, Wolanin J, Yamashita E, Kondo T, Akiyama S (2015) Circadian rhythms. Atomic-scale origins of slowness in the cyanobacterial circadian clock. Science 349(6245):312–316.  https://doi.org/10.1126/science.1261040
  2. Arita K, Hashimoto H, Igari K, Akaboshi M, Kutsuna S, Sato M, Shimizu T (2007) Structural and biochemical characterization of a cyanobacterium circadian clock-modifier protein. J Biol Chem 282(2):1128–1135.  https://doi.org/10.1074/jbc.M608148200CrossRefPubMedPubMedCentralGoogle Scholar
  3. Axmann IM, Dühring U, Seeliger L, Arnold A, Vanselow JT, Kramer A, Wilde A (2009) Biochemical evidence for a timing mechanism in Prochlorococcus. J Bacteriol 191(17):5342–5347.  https://doi.org/10.1128/JB.00419-09CrossRefPubMedPubMedCentralGoogle Scholar
  4. Axmann IM, Hertel S, Wiegard A, Dörrich AK, Wilde A (2014) Diversity of KaiC-based timing systems in marine cyanobacteria. Marine genomics 14:3–16.  https://doi.org/10.1016/j.margen.2013.12.006CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beck C, Hertel S, Rediger A, Lehmann R, Wiegard A, Kölsch A, Heilmann B, Georg J, Hess WR, Axmann IM (2014) A daily expression pattern of protein-coding genes and small non-coding RNAs in Synechocystis sp. PCC 6803. Appl Environ Microbiol.  https://doi.org/10.1128/aem.01086-14
  6. Boyd JS, Bordowitz JR, Bree AC, Golden SS (2013) An allele of the crm gene blocks cyanobacterial circadian rhythms. Proc Natl Acad Sci U S A 110(34):13950–13955.  https://doi.org/10.1073/pnas.1312793110CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brettschneider C, Rose RJ, Hertel S, Axmann IM, Heck AJR, Kollmann M (2010) A sequestration feedback determines dynamics and temperature entrainment of the KaiABC circadian clock. Mol Syst Biol 6:1–10.  https://doi.org/10.1038/msb.2010.44CrossRefGoogle Scholar
  8. Červený J, Nedbal L (2009) Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock. J Biol Rhythms 24(4):295–303.  https://doi.org/10.1177/0748730409338367
  9. Chang YG, Cohen SE, Phong C, Myers WK, Kim YI, Tseng R, Lin J, Zhang L, Boyd JS, Lee Y, Kang S, Lee D, Li S, Britt RD, Rust MJ, Golden SS, LiWang A (2015) Circadian rhythms. A protein fold switch joins the circadian oscillator to clock output in cyanobacteria. Science 349 (6245):324–328.  https://doi.org/10.1126/science.1260031
  10. Chang YG, Kuo NW, Tseng R, LiWang A (2011) Flexibility of the C-terminal, or CII, ring of KaiC governs the rhythm of the circadian clock of cyanobacteria. Proc Natl Acad Sci U S A 108(35):14431–14436.  https://doi.org/10.1073/pnas.1104221108CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chang YG, Tseng R, Kuo NW, LiWang A (2012) Rhythmic ring-ring stacking drives the circadian oscillator clockwise. Proc Natl Acad Sci U S A 109(42):16847–16851.  https://doi.org/10.1073/pnas.1211508109CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen AH, Lubkowicz D, Yeong V, Chang RL, Silver PA (2015) Transplantability of a circadian clock to a noncircadian organism. Sci Adv 1(5).  https://doi.org/10.1126/sciadv.1500358
  13. Chew J, Leypunskiy E, Lin J, Murugan A, Rust MJ (2018) High protein copy number is required to suppress stochasticity in the cyanobacterial circadian clock. Nature communications 9(1):3004.  https://doi.org/10.1038/s41467-018-05109-4CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chlipala GE, Mo S, Orjala J (2011) Chemodiversity in freshwater and terrestrial cyanobacteria—a source for drug discovery. Curr Drug Targets 12(11):1654–1673CrossRefPubMedPubMedCentralGoogle Scholar
  15. Clodong S, Dühring U, Kronk L, Wilde A, Axmann I, Herzel H, Kollmann M (2007) Functioning and robustness of a bacterial circadian clock. Mol Syst Biol 3:90.  https://doi.org/10.1038/msb4100128CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cohen SE, Erb ML, Selimkhanov J, Dong G, Hasty J, Pogliano J, Golden SS (2014) Dynamic localization of the cyanobacterial circadian clock proteins. Curr Biol 24(16):1836–1844.  https://doi.org/10.1016/j.cub.2014.07.036CrossRefPubMedPubMedCentralGoogle Scholar
  17. DeWoskin D, Geng W, Stinchcombe AR, Forger DB (2014) It is not the parts, but how they interact that determines the behaviour of circadian rhythms across scales and organisms. Interface focus 4(3):20130076.  https://doi.org/10.1098/rsfs.2013.0076CrossRefPubMedPubMedCentralGoogle Scholar
  18. Diamond S, Jun D, Rubin BE, Golden SS (2015) The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc Natl Acad Sci U S A 112(15):E1916–E1925.  https://doi.org/10.1073/pnas.1504576112CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dong G, Yang Q, Wang Q, Kim YI, Wood TL, Osteryoung KW, van Oudenaarden A, Golden SS (2010) Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell 140(4):529–539. S0092-8674(09)01628-6 [pii].  https://doi.org/10.1016/j.cell.2009.12.042
  20. Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29(2):95–103.  https://doi.org/10.1016/j.tibtech.2010.12.003CrossRefPubMedGoogle Scholar
  21. Dvornyk V, Deng HW, Nevo E (2004) Structure and molecular phylogeny of sasA genes in cyanobacteria: insights into evolution of the prokaryotic circadian system. Mol Biol Evol 21(8):1468–1476CrossRefPubMedGoogle Scholar
  22. Dvornyk V, Vinogradova O, Nevo E (2003) Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A 100(5):2495–2500CrossRefPubMedPubMedCentralGoogle Scholar
  23. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, Xu Y, Pan M, Valekunja UK, Feeney KA, Maywood ES, Hastings MH, Baliga NS, Merrow M, Millar AJ, Johnson CH, Kyriacou CP, O’Neill JS, Reddy AB (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485(7399):459–464.  https://doi.org/10.1038/nature11088CrossRefPubMedPubMedCentralGoogle Scholar
  24. Egli M, Mori T, Pattanayek R, Xu Y, Qin X, Johnson CH (2012) Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism. Biochemistry 51(8):1547–1558.  https://doi.org/10.1021/bi201525nCrossRefPubMedPubMedCentralGoogle Scholar
  25. Egli M, Pattanayek R, Sheehan JH, Xu Y, Mori T, Smith JA, Johnson CH (2013) Loop-loop interactions regulate KaiA-stimulated KaiC phosphorylation in the cyanobacterial KaiABC circadian clock. Biochemistry 52(7):1208–1220.  https://doi.org/10.1021/bi301691aCrossRefPubMedPubMedCentralGoogle Scholar
  26. Emberly E, Wingreen NS (2006) Hourglass model for a protein-based circadian oscillator. Phys Rev Lett 96(3):038303CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gallon JR, LaRue TA, Kurz WG (1974) Photosynthesis and nitrogenase activity in the blue-green alga Gloeocapsa. Can J Microbiol 20(12):1633–1637CrossRefPubMedGoogle Scholar
  28. Gan S, O’Shea EK (2017) An unstable singularity underlies stochastic phasing of the circadian clock in individual cyanobacterial cells. Mol Cell 67(4):659–672, e612.  https://doi.org/10.1016/j.molcel.2017.07.015
  29. Garces RG, Wu N, Gillon W, Pai EF (2004) Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC. EMBO J 23(8):1688–1698.  https://doi.org/10.1038/sj.emboj.7600190CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grobbelaar N, Huang TC, Lin HY, Chow TJ (1986) Dinitrogen-fixing endogenous rhythm in synechococcus Rf-1. FEMS Microbiol Lett 37(2):173–177.  https://doi.org/10.1111/j.1574-6968.1986.tb01788.xCrossRefGoogle Scholar
  31. Guerreiro AC, Benevento M, Lehmann R, van Breukelen B, Post H, Giansanti P, Altelaar AF, Axmann IM, Heck AJ (2014) Daily rhythms in the cyanobacterium Synechococcus elongatus probed by high-resolution mass spectrometry based proteomics reveals a small-defined set of cyclic proteins. Mol Cell Proteomics.  https://doi.org/10.1074/mcp.m113.035840
  32. Gutu A, O’Shea EK (2013) Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression. Mol Cell 50 (2):288–294. S1097-2765(13)00178-0 [pii].  https://doi.org/10.1016/j.molcel.2013.02.022
  33. Hanaoka M, Takai N, Hosokawa N, Fujiwara M, Akimoto Y, Kobori N, Iwasaki H, Kondo T, Tanaka K (2012) RpaB, another response regulator operating circadian clock-dependent transcriptional regulation in Synechococcus elongatus PCC 7942. J Biol Chem 287(31):26321–26327.  https://doi.org/10.1074/jbc.M111.338251CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343(6258):536–540.  https://doi.org/10.1038/343536a0CrossRefPubMedGoogle Scholar
  35. Hayashi F, Itoh N, Uzumaki T, Iwase R, Tsuchiya Y, Yamakawa H, Morishita M, Onai K, Itoh S, Ishiura M (2004) Roles of two ATPase-motif-containing domains in cyanobacterial circadian clock protein KaiC. J Biol Chem 279(50):52331–52337.  https://doi.org/10.1074/jbc.M406604200CrossRefPubMedGoogle Scholar
  36. Hayashi F, Iwase R, Uzumaki T, Ishiura M (2006) Hexamerization by the N-terminal domain and intersubunit phosphorylation by the C-terminal domain of cyanobacterial circadian clock protein KaiC. Biochem Biophys Res Commun 348(3):864–872.  https://doi.org/10.1016/j.bbrc.2006.07.143CrossRefPubMedGoogle Scholar
  37. Hayashi F, Suzuki H, Iwase R, Uzumaki T, Miyake A, Shen JR, Imada K, Furukawa Y, Yonekura K, Namba K, Ishiura M (2003) ATP-induced hexameric ring structure of the cyanobacterial circadian clock protein KaiC. Genes Cells 8(3):287–296CrossRefGoogle Scholar
  38. Hays SG, Yan LLW, Silver PA, Ducat DC (2017) Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. J Biol Eng 11:4.  https://doi.org/10.1186/s13036-017-0048-5CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hertel S, Brettschneider C, Axmann IM (2013) Revealing a two-loop transcriptional feedback mechanism in the cyanobacterial circadian clock. PLoS Comput Biol 9(3):e1002966.  https://doi.org/10.1371/journal.pcbi.1002966CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hitomi K, Oyama T, Han S, Arvai AS, Getzoff ED (2005) Tetrameric architecture of the circadian clock protein KaiB. A novel interface for intermolecular interactions and its impact on the circadian rhythm. J Biol Chem 280(19):19127–19135Google Scholar
  41. Holtzendorff J, Partensky F, Mella D, Lennon JF, Hess WR, Garczarek L (2008) Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J Biol Rhythms 23(3):187–199CrossRefGoogle Scholar
  42. Hosokawa N, Kushige H, Iwasaki H (2013) Attenuation of the posttranslational oscillator via transcription-translation feedback enhances circadian-phase shifts in Synechococcus. Proc Natl Acad Sci U S A 110(35):14486–14491.  https://doi.org/10.1073/pnas.1302243110CrossRefPubMedPubMedCentralGoogle Scholar
  43. Iida T, Mutoh R, Onai K, Morishita M, Furukawa Y, Namba K, Ishiura M (2015) Importance of the monomer-dimer-tetramer interconversion of the clock protein KaiB in the generation of circadian oscillations in cyanobacteria. Genes Cells 20(3):173–190.  https://doi.org/10.1111/gtc.12211CrossRefPubMedGoogle Scholar
  44. Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281(5382):1519–1523CrossRefGoogle Scholar
  45. Ito H, Kageyama H, Mutsuda M, Nakajima M, Oyama T, Kondo T (2007) Autonomous synchronization of the circadian KaiC phosphorylation rhythm. Nat Struct Mol Biol 14(11):1084–1088CrossRefGoogle Scholar
  46. Ito H, Mutsuda M, Murayama Y, Tomita J, Hosokawa N, Terauchi K, Sugita C, Sugita M, Kondo T, Iwasaki H (2009) Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proc Natl Acad Sci U S A 106(33):14168–14173.  https://doi.org/10.1073/pnas.0902587106CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ivleva NB, Bramlett MR, Lindahl PA, Golden SS (2005) LdpA: a component of the circadian clock senses redox state of the cell. EMBO J 24(6):1202–1210CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ivleva NB, Gao T, LiWang AC, Golden SS (2006) Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock. Proc Natl Acad Sci U S A 103(46):17468–17473.  https://doi.org/10.1073/pnas.0606639103CrossRefPubMedPubMedCentralGoogle Scholar
  49. Iwasaki H, Nishiwaki T, Kitayama Y, Nakajima M, Kondo T (2002) KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria. Proc Natl Acad Sci U S A 99(24):15788–15793CrossRefPubMedPubMedCentralGoogle Scholar
  50. Iwasaki H, Taniguchi Y, Ishiura M, Kondo T (1999) Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria. EMBO J 18(5):1137–1145CrossRefPubMedPubMedCentralGoogle Scholar
  51. Iwasaki H, Williams SB, Kitayama Y, Ishiura M, Golden SS, Kondo T (2000) A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101(2):223–233CrossRefGoogle Scholar
  52. Iwase R, Imada K, Hayashi F, Uzumaki T, Morishita M, Onai K, Furukawa Y, Namba K, Ishiura M (2005) Functionally important substructures of circadian clock protein KaiB in a unique tetramer complex. J Biol Chem 280(52):43141–43149CrossRefGoogle Scholar
  53. Johnson CH, Egli M (2014) Metabolic compensation and circadian resilience in prokaryotic cyanobacteria. Annu Rev Biochem 83:221–247.  https://doi.org/10.1146/annurev-biochem-060713-035632CrossRefPubMedPubMedCentralGoogle Scholar
  54. Johnson CH, Golden SS, Ishiura M, Kondo T (1996) Circadian clocks in prokaryotes. Mol Microbiol 21(1):5–11CrossRefGoogle Scholar
  55. Johnson CH, Stewart PL, Egli M (2011) The cyanobacterial circadian system: from biophysics to bioevolution. Annual review of biophysics 40:143–167.  https://doi.org/10.1146/annurev-biophys-042910-155317CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kageyama H, Kondo T, Iwasaki H (2003) Circadian formation of clock protein complexes by KaiA, KaiB, KaiC, and SasA in cyanobacteria. J Biol Chem 278(4):2388–2395CrossRefGoogle Scholar
  57. Katayama M, Tsinoremas NF, Kondo T, Golden SS (1999) cpmA, a gene involved in an output pathway of the cyanobacterial circadian system. J Bacteriol 181(11):3516–3524CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kim Y-I, Dong G, Carruthers CW Jr, Golden SS, LiWang A (2008) The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria. Proc Natl Acad Sci U S A 105(35):12825–12830CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kim YI, Vinyard DJ, Ananyev GM, Dismukes GC, Golden SS (2012) Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator. Proc Natl Acad Sci U S A 109(44):17765–17769.  https://doi.org/10.1073/pnas.1216401109CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kitayama Y, Iwasaki H, Nishiwaki T, Kondo T (2003) KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. EMBO J 22(9):2127–2134CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kitayama Y, Nishiwaki-Ohkawa T, Sugisawa Y, Kondo T (2013) KaiC intersubunit communication facilitates robustness of circadian rhythms in cyanobacteria. Nature communications 4:2897.  https://doi.org/10.1038/ncomms3897CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kitayama Y, Nishiwaki T, Terauchi K, Kondo T (2008) Dual KaiC-based oscillations constitute the circadian system of cyanobacteria. Genes Dev 22(11):1513–1521CrossRefPubMedPubMedCentralGoogle Scholar
  63. Knoop H, Steuer R (2015) A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production. Front Bioeng Biotechnol 3:47.  https://doi.org/10.3389/fbioe.2015.00047CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kondo T, Mori T, Lebedeva NV, Aoki S, Ishiura M, Golden SS (1997) Circadian rhythms in rapidly dividing cyanobacteria. Science 275(5297):224–227CrossRefGoogle Scholar
  65. Kurosawa G, Aihara K, Iwasa Y (2006) A model for the circadian rhythm of cyanobacteria that maintains oscillation without gene expression. Biophys J 91(6):2015–2023. S0006-3495(06)71917-8 [pii].  https://doi.org/10.1529/biophysj.105.076554
  66. Kurosawa S, Murakami R, Onai K, Morishita M, Hasegawa D, Iwase R, Uzumaki T, Hayashi F, Kitajima-Ihara T, Sakata S, Murakami M, Kouyama T, Ishiura M (2009) Functionally important structural elements of the cyanobacterial clock-related protein Pex. Genes Cells 14(1):1–16.  https://doi.org/10.1111/j.1365-2443.2008.01245.xCrossRefPubMedGoogle Scholar
  67. Kutsuna S, Kondo T, Aoki S, Ishiura M (1998) A period-extender gene, pex, that extends the period of the circadian clock in the cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 180(8):2167–2174Google Scholar
  68. Kutsuna S, Kondo T, Ikegami H, Uzumaki T, Katayama M, Ishiura M (2007) The circadian clock-related gene pex regulates a negative cis element in the kaiA promoter region. J Bacteriol 189(21):7690–7696.  https://doi.org/10.1128/JB.00835-07CrossRefPubMedPubMedCentralGoogle Scholar
  69. Leipe DD, Aravind L, Grishin NV, Koonin EV (2000) The bacterial replicative helicase DnaB evolved from a RecA duplication. Genome Res 10(1):5–16PubMedGoogle Scholar
  70. Lin J, Chew J, Chockanathan U, Rust MJ (2014) Mixtures of opposing phosphorylations within hexamers precisely time feedback in the cyanobacterial circadian clock. Proc Natl Acad Sci U S A 111(37):E3937–E3945.  https://doi.org/10.1073/pnas.1408692111CrossRefPubMedPubMedCentralGoogle Scholar
  71. Loeschcke A, Dienst D, Wewer V, Hage-Hülsmann J, Dietsch M, Kranz-Finger S, Huren V, Metzger S, Urlacher VB, Gigolashvili T, Kopriva S, Axmann IM, Drepper T, Jaeger KE (2017) The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS One 12 (12):e0189816.  https://doi.org/10.1371/journal.pone.0189816
  72. Maniscalco M, Nannen J, Sodi V, Silver G, Lowrey PL, Bidle KA (2014) Light-dependent expression of four cryptic archaeal circadian gene homologs. Frontiers in microbiology 5:79.  https://doi.org/10.3389/fmicb.2014.00079CrossRefPubMedPubMedCentralGoogle Scholar
  73. Markson JS, Piechura JR, Puszynska AM, O’Shea EK (2013) Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 155(6):1396–1408.  https://doi.org/10.1016/j.cell.2013.11.005CrossRefPubMedPubMedCentralGoogle Scholar
  74. Millineaux PM, Gallon JR, Chaplin AE (1981) Acetylene reduction (nitrogen fixation) by cyanobacteria grown under alternating light-dark cycles. FEMS Microbiol Lett 10(3):245–247.  https://doi.org/10.1111/j.1574-6968.1981.tb06249.xCrossRefGoogle Scholar
  75. Min H, Guo H, Xiong J (2005) Rhythmic gene expression in a purple photosynthetic bacterium. Rhodobacter sphaeroides. FEBS Lett 579(3):808–812.  https://doi.org/10.1016/j.febslet.2005.01.003CrossRefPubMedGoogle Scholar
  76. Mori T, Saveliev SV, Xu Y, Stafford WF, Cox MM, Inman RB, Johnson CH (2002) Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA. Proc Natl Acad Sci U S A 99(26):17203–17208CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mori T, Williams DR, Byrne MO, Qin X, Egli M, McHaourab HS, Stewart PL, Johnson CH (2007) Elucidating the ticking of an in vitro circadian clockwork. PLoS Biol 5(4):e93CrossRefPubMedPubMedCentralGoogle Scholar
  78. Mukaiyama A, Furuike Y, Abe J, Yamashita E, Kondo T, Akiyama S (2018) Conformational rearrangements of the C1 ring in KaiC measure the timing of assembly with KaiB. Scientific reports 8(1):8803.  https://doi.org/10.1038/s41598-018-27131-8CrossRefPubMedPubMedCentralGoogle Scholar
  79. Murakami R, Miyake A, Iwase R, Hayashi F, Uzumaki T, Ishiura M (2008) ATPase activity and its temperature compensation of the cyanobacterial clock protein KaiC. Genes Cells 13(4):387–395.  https://doi.org/10.1111/j.1365-2443.2008.01174.xCrossRefPubMedGoogle Scholar
  80. Murakami R, Mutoh R, Ishii K, Ishiura M (2016) Circadian oscillations of KaiA-KaiC and KaiB-KaiC complex formations in an in vitro reconstituted KaiABC clock oscillator. Genes Cells 21(8):890–900.  https://doi.org/10.1111/gtc.12392CrossRefPubMedPubMedCentralGoogle Scholar
  81. Murakami R, Mutoh R, Iwase R, Furukawa Y, Imada K, Onai K, Morishita M, Yasui S, Ishii K, Valencia Swain JO, Uzumaki T, Namba K, Ishiura M (2012) The roles of the dimeric and tetrameric structures of the clock protein KaiB in the generation of circadian oscillations in cyanobacteria. J Biol Chem 287(35):29506–29515.  https://doi.org/10.1074/jbc.M112.349092CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mutoh R, Nishimura A, Yasui S, Onai K, Ishiura M (2013) The ATP-mediated regulation of KaiB-KaiC interaction in the cyanobacterial circadian clock. PLoS ONE 8(11):e80200.  https://doi.org/10.1371/journal.pone.0080200CrossRefPubMedPubMedCentralGoogle Scholar
  83. Nakahira Y, Katayama M, Miyashita H, Kutsuna S, Iwasaki H, Oyama T, Kondo T (2004) Global gene repression by KaiC as a master process of prokaryotic circadian system. Proc Natl Acad Sci U S A 101(3):881–885CrossRefPubMedPubMedCentralGoogle Scholar
  84. Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308(5720):414–415CrossRefPubMedPubMedCentralGoogle Scholar
  85. Nakajima M, Ito H, Kondo T (2010) In vitro regulation of circadian phosphorylation rhythm of cyanobacterial clock protein KaiC by KaiA and KaiB. FEBS Lett 584(5):898–902.  https://doi.org/10.1016/j.febslet.2010.01.016CrossRefPubMedPubMedCentralGoogle Scholar
  86. Nishiwaki-Ohkawa T, Kitayama Y, Ochiai E, Kondo T (2014) Exchange of ADP with ATP in the CII ATPase domain promotes autophosphorylation of cyanobacterial clock protein KaiC. Proc Natl Acad Sci U S A 111(12):4455–4460.  https://doi.org/10.1073/pnas.1319353111CrossRefPubMedPubMedCentralGoogle Scholar
  87. Nishiwaki T, Iwasaki H, Ishiura M, Kondo T (2000) Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc Natl Acad Sci U S A 97(1):495–499CrossRefPubMedPubMedCentralGoogle Scholar
  88. Nishiwaki T, Kondo T (2012) Circadian autodephosphorylation of cyanobacterial clock protein KaiC occurs via formation of ATP as intermediate. J Biol Chem 287(22):18030–18035.  https://doi.org/10.1074/jbc.M112.350660CrossRefPubMedPubMedCentralGoogle Scholar
  89. Nishiwaki T, Satomi Y, Kitayama Y, Terauchi K, Kiyohara R, Takao T, Kondo T (2007) A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J 26(17):4029–4037CrossRefPubMedPubMedCentralGoogle Scholar
  90. Nishiwaki T, Satomi Y, Nakajima M, Lee C, Kiyohara R, Kageyama H, Kitayama Y, Temamoto M, Yamaguchi A, Hijikata A, Go M, Iwasaki H, Takao T, Kondo T (2004) Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. Proc Natl Acad Sci U S A 101(38):13927–13932CrossRefPubMedPubMedCentralGoogle Scholar
  91. Osanai T, Shirai T, Iijima H, Kuwahara A, Suzuki I, Kondo A, Hirai MY (2015) Alteration of cyanobacterial sugar and amino acid metabolism by overexpression hik8, encoding a KaiC-associated histidine kinase. Environ Microbiol 17(7):2430–2440.  https://doi.org/10.1111/1462-2920.12715CrossRefPubMedGoogle Scholar
  92. Oyama K, Azai C, Matsuyama J, Terauchi K (2018) Phosphorylation at Thr432 induces structural destabilization of the CII ring in the circadian oscillator KaiC. FEBS Lett 592(1):36–45.  https://doi.org/10.1002/1873-3468.12945CrossRefPubMedGoogle Scholar
  93. Paijmans J, Lubensky DK, Ten Wolde PR (2017) Period robustness and entrainability of the Kai system to changing nucleotide concentrations. Biophys J 113(1):157–173.  https://doi.org/10.1016/j.bpj.2017.05.048CrossRefPubMedPubMedCentralGoogle Scholar
  94. Pattanayek R, Egli M (2015) Protein-protein interactions in the cyanobacterial circadian clock: structure of KaiA dimer in complex with C-terminal KaiC peptides at 2.8 a resolution. Biochemistry 54(30):4575–4578.  https://doi.org/10.1021/acs.biochem.5b00694
  95. Pattanayek R, Mori T, Xu Y, Pattanayek S, Johnson CH, Egli M (2009) Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase. ATPase and phosphatase. PLoS One 4(11):e7529.  https://doi.org/10.1371/journal.pone.0007529CrossRefPubMedGoogle Scholar
  96. Pattanayek R, Sidiqi SK, Egli M (2012) Crystal structure of the redox-active cofactor dibromothymoquinone bound to circadian clock protein KaiA and structural basis for dibromothymoquinone’s ability to prevent stimulation of KaiC phosphorylation by KaiA. Biochemistry 51(41):8050–8052.  https://doi.org/10.1021/bi301222tCrossRefPubMedPubMedCentralGoogle Scholar
  97. Pattanayek R, Wang J, Mori T, Xu Y, Johnson CH, Egli M (2004) Visualizing a circadian clock protein: crystal structure of KaiC and functional insights. Mol Cell 15(3):375–388CrossRefPubMedGoogle Scholar
  98. Pattanayek R, Williams DR, Pattanayek S, Mori T, Johnson CH, Stewart PL, Egli M (2008) Structural model of the circadian clock KaiB-KaiC complex and mechanism for modulation of KaiC phosphorylation. EMBO J 27(12):1767–1778.  https://doi.org/10.1038/emboj.2008.104CrossRefPubMedPubMedCentralGoogle Scholar
  99. Pattanayek R, Williams DR, Pattanayek S, Xu Y, Mori T, Johnson CH, Stewart PL, Egli M (2006) Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. EMBO J 25(9):2017–2028CrossRefPubMedPubMedCentralGoogle Scholar
  100. Pattanayek R, Williams DR, Rossi G, Weigand S, Mori T, Johnson CH, Stewart PL, Egli M (2011) Combined SAXS/EM based models of the S. elongatus post-translational circadian oscillator and its interactions with the output His-kinase SasA. PLoS One 6(8):e23697.  https://doi.org/10.1371/journal.pone.0023697
  101. Pattanayek R, Xu Y, Lamichhane A, Johnson CH, Egli M (2014) An arginine tetrad as mediator of input-dependent and input-independent ATPases in the clock protein KaiC. Acta Crystallogr D Biol Crystallogr 70(Pt 5):1375–1390.  https://doi.org/10.1107/S1399004714003228CrossRefPubMedPubMedCentralGoogle Scholar
  102. Phong C, Markson JS, Wilhoite CM, Rust MJ (2013) Robust and tunable circadian rhythms from differentially sensitive catalytic domains. Proc Natl Acad Sci U S A 110(3):1124–1129.  https://doi.org/10.1073/pnas.1212113110CrossRefPubMedGoogle Scholar
  103. Pittayakanchit W, Lu Z, Chew J, Rust MJ, Murugan A (2018) Biophysical clocks face a trade-off between internal and external noise resistance. eLife 7.  https://doi.org/10.7554/elife.37624
  104. Qin X, Byrne M, Mori T, Zou P, Williams DR, McHaourab H, Johnson CH (2010a) Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. Proc Natl Acad Sci U S A 107(33):14805–14810.  https://doi.org/10.1073/pnas.1002119107CrossRefPubMedPubMedCentralGoogle Scholar
  105. Qin X, Byrne M, Xu Y, Mori T, Johnson CH (2010b) Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol 8(6):e1000394.  https://doi.org/10.1371/journal.pbio.1000394CrossRefPubMedPubMedCentralGoogle Scholar
  106. Rapp PE (1987) Why are so many biological systems periodic? Prog Neurobiol 29(3):261–273CrossRefPubMedGoogle Scholar
  107. Reddy AB, Rey G (2014) Metabolic and nontranscriptional circadian clocks: eukaryotes. Annu Rev Biochem 83:165–189.  https://doi.org/10.1146/annurev-biochem-060713-035623CrossRefPubMedPubMedCentralGoogle Scholar
  108. Roenneberg T, Merrow M (2016) The circadian clock and human health. Curr Biol 26(10):R432–R443.  https://doi.org/10.1016/j.cub.2016.04.011CrossRefPubMedGoogle Scholar
  109. Rosbash M (2009) The implications of multiple circadian clock origins. PLoS Biol 7(3):e62.  https://doi.org/10.1371/journal.pbio.1000062CrossRefPubMedGoogle Scholar
  110. Rust MJ, Golden SS, O’Shea EK (2011) Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331(6014):220–223.  https://doi.org/10.1126/science.1197243CrossRefPubMedPubMedCentralGoogle Scholar
  111. Rust MJ, Markson JS, Lane WS, Fisher DS, O’Shea EK (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318(5851):809–812CrossRefPubMedPubMedCentralGoogle Scholar
  112. Saha R, Liu D, Hoynes-O’Connor A, Liberton M, Yu J, Bhattacharyya-Pakrasi M, Balassy A, Zhang F, Moon TS, Maranas CD, Pakrasi HB (2016) Diurnal regulation of cellular processes in the cyanobacterium synechocystis sp. Strain PCC 6803: insights from transcriptomic, fluxomic, and physiological analyses. mBio 7(3).  https://doi.org/10.1128/mbio.00464-16
  113. Schmelling NM, Axmann IM (2018) Computational modelling unravels the precise clockwork of cyanobacteria. Interface focus 8(6):20180038.  https://doi.org/10.1098/rsfs.2018.0038CrossRefPubMedPubMedCentralGoogle Scholar
  114. Schmelling NM, Lehmann R, Chaudhury P, Beck C, Albers SV, Axmann IM, Wiegard A (2017) Minimal tool set for a prokaryotic circadian clock. BMC Evol Biol 17(1):169.  https://doi.org/10.1186/s12862-017-0999-7CrossRefPubMedPubMedCentralGoogle Scholar
  115. Shultzaberger RK, Boyd JS, Diamond S, Greenspan RJ, Golden SS (2015) Giving time purpose: the synechococcus elongatus clock in a broader network context. Annu Rev Genet 49:485–505.  https://doi.org/10.1146/annurev-genet-111212-133227CrossRefPubMedPubMedCentralGoogle Scholar
  116. Smith RM, Williams SB (2006) Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 103(22):8564–8569. 0508696103 [pii].  https://doi.org/10.1073/pnas.0508696103
  117. Snijder J, Burnley RJ, Wiegard A, Melquiond AS, Bonvin AM, Axmann IM, Heck AJ (2014) Insight into cyanobacterial circadian timing from structural details of the KaiB-KaiC interaction. Proc Natl Acad Sci U S A 111(4):1379–1384.  https://doi.org/10.1073/pnas.1314326111CrossRefPubMedPubMedCentralGoogle Scholar
  118. Snijder J, Schuller JM, Wiegard A, Lössl P, Schmelling N, Axmann IM, Plitzko JM, Förster F, Heck AJ (2017) Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state. Science 355(6330):1181–1184.  https://doi.org/10.1126/science.aag3218CrossRefPubMedPubMedCentralGoogle Scholar
  119. Stal LJ, Krumbein WE (1987) Temporal separation of nitrogen fixation and photosynthesis in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. Arch Microbiol 149(1):76–80.  https://doi.org/10.1007/bf00423140CrossRefGoogle Scholar
  120. Sweeney BM, Borgese MB (1989) A circadian rhythm in cell division in a prokaryote, the cyanobacterium Synechococcus WH7803. J Phycol 25(1):183–186CrossRefGoogle Scholar
  121. Takai N, Nakajima M, Oyama T, Kito R, Sugita C, Sugita M, Kondo T, Iwasaki H (2006) A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc Natl Acad Sci U S A 103(32):12109–12114CrossRefPubMedPubMedCentralGoogle Scholar
  122. Taniguchi Y, Katayama M, Ito R, Takai N, Kondo T, Oyama T (2007) labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. Genes Dev 21(1):60–70CrossRefPubMedPubMedCentralGoogle Scholar
  123. Taniguchi Y, Takai N, Katayama M, Kondo T, Oyama T (2010) Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria. Proc Natl Acad Sci U S A. 0909924107 [pii].  https://doi.org/10.1073/pnas.0909924107
  124. Taniguchi Y, Yamaguchi A, Hijikata A, Iwasaki H, Kamagata K, Ishiura M, Go M, Kondo T (2001) Two KaiA-binding domains of cyanobacterial circadian clock protein KaiC. FEBS Lett 496(2–3):86–90CrossRefPubMedPubMedCentralGoogle Scholar
  125. Teng SW, Mukherji S, Moffitt JR, de Buyl S, O’Shea EK (2013) Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science 340(6133):737–740. 340/6133/737 [pii].  https://doi.org/10.1126/science.1230996
  126. Terauchi K, Kitayama Y, Nishiwaki T, Miwa K, Murayama Y, Oyama T, Kondo T (2007) ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. Proc Natl Acad Sci U S A 104(41):16377–16381CrossRefPubMedPubMedCentralGoogle Scholar
  127. Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307(5707):251–254.  https://doi.org/10.1126/science.1102540CrossRefPubMedPubMedCentralGoogle Scholar
  128. Tseng R, Chang YG, Bravo I, Latham R, Chaudhary A, Kuo NW, Liwang A (2014) Cooperative KaiA-KaiB-KaiC interactions affect KaiB/SasA competition in the circadian clock of cyanobacteria. J Mol Biol 426:389–402.  https://doi.org/10.1016/j.jmb.2013.09.040CrossRefPubMedPubMedCentralGoogle Scholar
  129. Tseng R, Goularte NF, Chavan A, Luu J, Cohen SE, Chang YG, Heisler J, Li S, Michael AK, Tripathi S, Golden SS, LiWang A, Partch CL (2017) Structural basis of the day-night transition in a bacterial circadian clock. Science 355(6330):1174–1180.  https://doi.org/10.1126/science.aag2516CrossRefPubMedPubMedCentralGoogle Scholar
  130. Ungerer J, Wendt KE, Hendry JI, Maranas CD, Pakrasi HB (2018) Comparative genomics reveals the molecular determinants of rapid growth of the cyanobacterium Synechococcus elongatus UTEX 2973. Proc Natl Acad Sci U S A 115(50):E11761–E11770.  https://doi.org/10.1073/pnas.1814912115CrossRefPubMedPubMedCentralGoogle Scholar
  131. Uzumaki T, Fujita M, Nakatsu T, Hayashi F, Shibata H, Itoh N, Kato H, Ishiura M (2004) Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein. Nat Struct Mol Biol 11(7):623–631.  https://doi.org/10.1038/nsmb781CrossRefPubMedGoogle Scholar
  132. Vakonakis I, Klewer DA, Williams SB, Golden SS, LiWang AC (2004a) Structure of the N-terminal domain of the circadian clock-associated histidine kinase SasA. J Mol Biol 342(1):9–17.  https://doi.org/10.1016/j.jmb.2004.07.010CrossRefPubMedGoogle Scholar
  133. Vakonakis I, Sun J, Wu T, Holzenburg A, Golden SS, LiWang AC (2004b) NMR structure of the KaiC-interacting C-terminal domain of KaiA, a circadian clock protein: implications for KaiA-KaiC interaction. Proc Natl Acad Sci U S A 101(6):1479–1484.  https://doi.org/10.1073/pnas.0305516101CrossRefPubMedPubMedCentralGoogle Scholar
  134. Valencia SJ, Bitou K, Ishii K, Murakami R, Morishita M, Onai K, Furukawa Y, Imada K, Namba K, Ishiura M (2012) Phase-dependent generation and transmission of time information by the KaiABC circadian clock oscillator through SasA-KaiC interaction in cyanobacteria. Genes Cells 17(5):398–419.  https://doi.org/10.1111/j.1365-2443.2012.01597.xCrossRefGoogle Scholar
  135. van Zon JS, Lubensky DK, Altena PR, ten Wolde PR (2007) An allosteric model of circadian KaiC phosphorylation. Proc Natl Acad Sci U S A 104(18):7420–7425CrossRefPubMedPubMedCentralGoogle Scholar
  136. Villarreal SA, Pattanayek R, Williams DR, Mori T, Qin X, Johnson CH, Egli M, Stewart PL (2013) CryoEM and molecular dynamics of the circadian KaiB-KaiC complex indicates KaiB monomers interact with KaiC and block ATP binding clefts. J Mol Biol 425:3311–3324.  https://doi.org/10.1016/j.jmb.2013.06.018CrossRefPubMedPubMedCentralGoogle Scholar
  137. Vosshall LB, Price JL, Sehgal A, Saez L, Young MW (1994) Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263(5153):1606–1609CrossRefGoogle Scholar
  138. Weare NM, Benemann JR (1974) Nitrogenase activity and photosynthesis in Plectonema boryanum. J Bacteriol 119(1):258–265CrossRefPubMedPubMedCentralGoogle Scholar
  139. Weiss TL, Young EJ, Ducat DC (2017) A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metab Eng 44:236–245.  https://doi.org/10.1016/j.ymben.2017.10.009CrossRefPubMedGoogle Scholar
  140. Welkie DG, Rubin BE, Diamond S, Hood RD, Savage DF, Golden SS (2019) A hard day’s night: cyanobacteria in diel cycles. Trends Microbiol 27(3):231–242.  https://doi.org/10.1016/j.tim.2018.11.002CrossRefPubMedGoogle Scholar
  141. Wiegard A, Dörrich AK, Deinzer HT, Beck C, Wilde A, Holtzendorff J, Axmann IM (2013) Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence. Microbiology 159:948–958.  https://doi.org/10.1099/mic.0.065425-0CrossRefPubMedGoogle Scholar
  142. Williams SB, Vakonakis I, Golden SS, LiWang AC (2002) Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proc Natl Acad Sci U S A 99(24):15357–15362.  https://doi.org/10.1073/pnas.232517099CrossRefPubMedPubMedCentralGoogle Scholar
  143. Woelfle MA, Xu Y, Qin X, Johnson CH (2007) Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc Natl Acad Sci U S A 104:18819–18824CrossRefPubMedPubMedCentralGoogle Scholar
  144. Wood TL, Bridwell-Rabb J, Kim YI, Gao T, Chang YG, LiWang A, Barondeau DP, Golden SS (2010) The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor. Proc Natl Acad Sci U S A 107(13):5804–5809.  https://doi.org/10.1073/pnas.0910141107CrossRefPubMedPubMedCentralGoogle Scholar
  145. Wyatt JT, Silvey JK (1969) Nitrogen fixation by gloeocapsa. Science 165(3896):908–909.  https://doi.org/10.1126/science.165.3896.908CrossRefPubMedGoogle Scholar
  146. Xu Y, Mori T, Pattanayek R, Pattanayek S, Egli M, Johnson CH (2004) Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses. Proc Natl Acad Sci U S A 101(38):13933–13938CrossRefPubMedPubMedCentralGoogle Scholar
  147. Xu Y, Mori T, Qin X, Yan H, Egli M, Johnson CH (2009) Intramolecular regulation of phosphorylation status of the circadian clock protein KaiC. PLoS ONE 4(11):e7509.  https://doi.org/10.1371/journal.pone.0007509CrossRefPubMedPubMedCentralGoogle Scholar
  148. Xu Y, Weyman PD, Umetani M, Xiong J, Qin X, Xu Q, Iwasaki H, Johnson CH (2013) Circadian yin-yang regulation and its manipulation to globally reprogram gene expression. Curr Biol 23(23):2365–2374.  https://doi.org/10.1016/j.cub.2013.10.011CrossRefPubMedPubMedCentralGoogle Scholar
  149. Yang Q, Pando BF, Dong G, Golden SS, van Oudenaarden A (2010) Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science 327(5972):1522–1526.  https://doi.org/10.1126/science.1181759CrossRefPubMedPubMedCentralGoogle Scholar
  150. Ye S, Vakonakis I, Ioerger TR, LiWang AC, Sacchettini JC (2004) Crystal structure of circadian clock protein KaiA from Synechococcus elongatus. J Biol Chem 279(19):20511–20518.  https://doi.org/10.1074/jbc.M400077200CrossRefPubMedGoogle Scholar
  151. Yoda M, Eguchi K, Terada TP, Sasai M (2007) Monomer-shuffling and allosteric transition in KaiC circadian oscillation. PLoS ONE 2(5):e408CrossRefPubMedPubMedCentralGoogle Scholar
  152. Zwicker D, Lubensky DK, Ten Wolde PR (2010) Robust circadian clocks from coupled protein-modification and transcription-translation cycles. Proc Natl Acad Sci U S A 107(52):22540–22545. 1007613107 [pii].  https://doi.org/10.1073/pnas.1007613107

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Snijder BioscienceUtrechtThe Netherlands
  2. 2.Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrechtThe Netherlands
  3. 3.Synthetic Microbiology, Biology DepartmentHeinrich Heine University DüsseldorfDüsseldorfGermany

Personalised recommendations