Structure and Function of Molecular Chaperones that Govern Immune Peptide Loading

  • David H. MarguliesEmail author
  • Jiansheng Jiang
  • Kannan Natarajan
Part of the Subcellular Biochemistry book series (SCBI, volume 93)


Major histocompatibility class I (MHC-I) molecules bind peptides derived from cellular synthesis and display them at the cell surface for recognition by receptors on T lymphocytes (TCR) or natural killer (NK) cells. Such recognition provides a crucial step in autoimmunity, identification of bacterial and viral pathogens, and anti-tumor responses. Understanding the mechanism by which such antigenic peptides in the ER are loaded and exchanged for higher affinity peptides onto MHC molecules has recently been clarified by cryo-EM and X-ray studies of the multimolecular peptide loading complex (PLC) and a unimolecular tapasin-like chaperone designated TAPBPR. Insights from these structural studies and complementary solution NMR experiments provide a basis for understanding mechanisms related to immune antigen presentation.


Immune recognition Major histocompatibility complex Chaperone Tapasin TAPBPR Protein loading complex Structural biology X-ray crystallography 



Major histocompatibility complex


MHC class I


MHC class II


T cell receptor


Natural killer


Endoplasmic reticulum


Peptide loading complex


Transporter associated with antigen processing

TAPBP or tapasin

TAP binding protein


TAP binding protein, related


Nuclear magnetic resonance



This research was supported by the Intramural Research Program of the National Institutes of Health, NIAID.


  1. Adams EJ, Luoma AM (2013) The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 31:529–561CrossRefGoogle Scholar
  2. Archbold JK, Ely LK, Kjer-Nielsen L, Burrows SR, Rossjohn J, McCluskey J, Macdonald WA (2008) T cell allorecognition and MHC restriction—A case of Jekyll and Hyde? Mol Immunol 45:583–598Google Scholar
  3. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512CrossRefGoogle Scholar
  4. Blees A, Januliene D, Hofmann T, Koller N, Schmidt C, Trowitzsch S, Moeller A, Tampe R (2017) Structure of the human MHC-I peptide-loading complex. Nature 551:525–528CrossRefGoogle Scholar
  5. Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473CrossRefGoogle Scholar
  6. Boyle LH, Hermann C, Boname JM, Porter KM, Patel PA, Burr ML, Duncan LM, Harbour ME, Rhodes DA, Skjodt K, Lehner PJ, Trowsdale J (2013) Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc Natl Acad Sci U S A 110:3465–3470CrossRefGoogle Scholar
  7. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39CrossRefGoogle Scholar
  8. Chen H, Li L, Weimershaus M, Evnouchidou I, van Endert P, Bouvier M (2016) ERAP1-ERAP2 dimers trim MHC I-bound precursor peptides; implications for understanding peptide editing. Sci Rep 6:28902Google Scholar
  9. Chen M, Bouvier M (2007) Analysis of interactions in a tapasin/class I complex provides a mechanism for peptide selection. EMBO J 26:1681–1690CrossRefGoogle Scholar
  10. Copeman J, Bangia N, Cross JC, Cresswell P (1998) Elucidation of the genetic basis of the antigen presentation defects in the mutant cell line. 220 reveals polymorphism and alternative splicing of the tapasin gene. Eur J Immunol 28:3783–3791CrossRefGoogle Scholar
  11. Dong G, Wearsch PA, Peaper DR, Cresswell P, Reinisch KM (2009) Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity 30:21–32CrossRefGoogle Scholar
  12. Fremont DH, Matsumura M, Stura EA, Peterson PA, Wilson IA (1992) Crystal structures of two viral peptides in complex with murine MHC class I H-2 Kb. Science 257:919–927CrossRefGoogle Scholar
  13. Garbi N, Tiwari N, Momburg F, Hammerling GJ (2003) A major role for tapasin as a stabilizer of the TAP peptide transporter and consequences for MHC class I expression. Eur J Immunol 33:264–73Google Scholar
  14. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC (1996) Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–141CrossRefGoogle Scholar
  15. Germain RN, Margulies DH (1993) The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 11:403–450CrossRefGoogle Scholar
  16. Grandea AG 3rd, Golovina TN, Hamilton SE, Sriram V, Spies T, Brutkiewicz RR, Harty JT, Eisenlohr LC, Van Kaer L (2000) Impaired assembly yet normal trafficking of MHC class I molecules in Tapasin mutant mice. Immunity 13:213–222CrossRefGoogle Scholar
  17. Hafstrand I, Sayitoglu EC, Apavaloaei A, Josey BJ, Sun R, Han X, Pellegrino S, Ozkazanc D, Potens R, Janssen L, Nilvebrant J, Nygren PA, Sandalova T, Springer S, Georgoudaki AM, Duru AD, Achour A (2019) Successive crystal structure snapshots suggest the basis for MHC class I peptide loading and editing by tapasin. Proc Natl Acad Sci U S A 116:5055–5060CrossRefGoogle Scholar
  18. Hermann C, Strittmatter LM, Deane, JE, Boyle, LH (2013) The binding of TAPBPR and Tapasin to MHC class I is mutually exclusive. J Immunol 191:5743–5750Google Scholar
  19. Hermann C, van Hateren A, Trautwein N, Neerincx A, Duriez PJ, Stevanovic S, Trowsdale J, Deane JE, Elliott T, Boyle LH (2015) TAPBPR alter MHC class I peptide presentation by functioning as a peptide exchange catalyst. Elife 4Google Scholar
  20. Ilca FT, Neerincx A, Hermann C, Marcu A, Stevanovic S, Deane JE, Boyle LH (2018) TAPBPR mediates peptide dissociation from MHC class I using a leucine lever. Elife 7Google Scholar
  21. Jiang J, Natarajan K, Boyd LF, Morozov GI, Mage MG, Margulies DH (2017) Crystal structure of a TAPBPR-MHC I complex reveals the mechanism of peptide editing in antigen presentation. Science 358:1064–1068CrossRefGoogle Scholar
  22. Koch J, Tampe R (2006) The macromolecular peptide-loading complex in MHC class I-dependent antigen presentation. Cell Mol Life Sci 63:653–662CrossRefGoogle Scholar
  23. La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J (2018) Understanding the drivers of MHC restriction of T cell receptors. Nat Rev Immunol 18:467–478CrossRefGoogle Scholar
  24. Lawson CL, Baker ML, Best C, Bi C, Dougherty M, Feng P, van Ginkel G, Devkota B, Lagerstedt I, Ludtke SJ, Newman RH, Oldfield TJ, Rees I, Sahni G, Sala R, Velankar S, Warren J, Westbrook JD, Henrick K, Kleywegt GJ, Berman HM, Chiu W (2011) unified data resource for CryoEM. Nucleic Acids Res 39:D456–D464Google Scholar
  25. Ljunggren HG, Stam NJ, Ohlen C, Neefjes JJ, Hoglund P, Heemels MT, Bastin J, Schumacher TN, Townsend A, Karre K et al (1990) Empty MHC class I molecules come out in the cold. Nature 346:476–480CrossRefGoogle Scholar
  26. Margulies DH, Natarajan K, Rossjohn J, McCluskey J (2008) The major histocompatibility complex. In Paul WE (ed) Fundamental immunology. Wolters Kluwer, Lippincott Williams & Wilkins, Philadelphia, BaltimoreGoogle Scholar
  27. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW (2008) Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu Rev Immunol 26:171–203CrossRefGoogle Scholar
  28. McShan AC, Natarajan K, Kumirov VK, Flores-Solis D, Jiang J, Badstubner M, Toor JS, Bagshaw CR, Kovrigin EL, Margulies DH, Sgourakis NG (2018) Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle. Nat Chem Biol 14:811–820CrossRefGoogle Scholar
  29. Mellins ED, Stern LJ (2014) HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol 26:115–122Google Scholar
  30. Morozov GI, Zhao H, Mage MG, Boyd LF, Jiang J, Dolan MA, Venna R, Norcross MA, McMurtrey CP, Hildebrand W, Schuck P, Natarajan K, Margulies DH (2016) Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing. Proc Natl Acad Sci U S A 113:E1006–E1015Google Scholar
  31. Natarajan K, McShan AC, Jiang J, Kumirov VK, Wang R, Zhao H, Schuck P, Tilahun ME, Boyd LF, Ying J, Bax A, Margulies DH, Sgourakis NG (2017) An allosteric site in the T-cell receptor Cbeta domain plays a critical signalling role. Nat Commun 8:15260Google Scholar
  32. Neerincx A, Hermann C, Antrobus R, van Hateren A, Cao H, Trautwein N, Stevanovic S, Elliott T, Deane JE, Boyle LH (2017) TAPBPR bridges UDP-glucose: glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. Elife 6Google Scholar
  33. Panter MS, Jain A, Leonhardt RM, Ha T, Cresswell P (2012) Dynamics of major histocompatibility complex class I association with the human peptide-loading complex. J Biol Chem 287:31172–31184CrossRefGoogle Scholar
  34. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG (2015) The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 43:D423–D431CrossRefGoogle Scholar
  35. Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC Class I and MHC Class II molecules. Trends Immunol 37:724–737CrossRefGoogle Scholar
  36. Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P (1996) Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5:103–114CrossRefGoogle Scholar
  37. Sadegh-Nasseri S (2016) A step-by-step overview of the dynamic process of epitope selection by major histocompatibility complex class II for presentation to helper T cells. F1000 Res 5Google Scholar
  38. Sadegh-Nasseri S, Chen M, Narayan K, Bouvier M (2008) The convergent roles of tapasin and HLA-DM in antigen presentation. Trends Immunol 29:141–147CrossRefGoogle Scholar
  39. Saini SK, Ostermeir K, Ramnarayan VR, Schuster H, Zacharias M, Springer S (2013) Dipeptides promote folding and peptide binding of MHC class I molecules. Proc Natl Acad Sci U S A 110:15383–15388CrossRefGoogle Scholar
  40. Saper MA, Bjorkman PJ, Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 219:277–319CrossRefGoogle Scholar
  41. Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N. (2002) ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419:480–483Google Scholar
  42. Spies T, DeMars R (1991) Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 351:323–324CrossRefGoogle Scholar
  43. Teng MS, Stephens R, Du Pasquier L, Freeman T, Lindquist JA, Trowsdale J. (2002).A human TAPBP (TAPASIN)-related gene, TAPBP-R. Eur J Immunol 32:1059–1068Google Scholar
  44. Thomas C, Tampe R (2017) Structure of the TAPBPR-MHC I complex defines the mechanism of peptide loading and editing. Science 358:1060–1064CrossRefGoogle Scholar
  45. van Hateren A, Carter R, Bailey A, Kontouli N, Williams AP, Kaufman J, Elliott T (2013) A mechanistic basis for the co-evolution of chicken tapasin and major histocompatibility complex class I (MHC I) proteins. J Biol Chem 288:32797–2808Google Scholar
  46. Van Hateren A, James E, Bailey A, Phillips A, Dalchau N, Elliott T (2010) The cell biology of major histocompatibility complex class I assembly: towards a molecular understanding. Tissue Antigens 76:259–275CrossRefGoogle Scholar
  47. Wang R, Natarajan K, Margulies DH (2009) Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. J Immunol 183:2554–2564CrossRefGoogle Scholar
  48. Wearsch PA, Cresswell P (2007) Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nat Immunol 8:873–881CrossRefGoogle Scholar
  49. Yewdell JW, Nicchitta CV (2006) The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol 27:368–373CrossRefGoogle Scholar
  50. York IA, Rock KL (1996) Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol 14:369–396CrossRefGoogle Scholar
  51. Zacharias M, Springer S (2004) Conformational flexibility of the MHC class I alpha1-alpha2 domain in peptide bound and free states: a molecular dynamics simulation study. Biophys J 87:2203–2214CrossRefGoogle Scholar
  52. Zhang W, Wearsch PA, Zhu Y, Leonhardt RM, Cresswell P. (2011).A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules. Proc Natl Acad Sci U S A 108:4956–4961Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David H. Margulies
    • 1
    Email author
  • Jiansheng Jiang
    • 1
  • Kannan Natarajan
    • 1
  1. 1.Molecular Biology Section, Laboratory of Immune System BiologyNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA

Personalised recommendations