Introduction: Protein Oligomerization and the Formation of Macromolecular Assemblies

  • J. Robin HarrisEmail author
  • Jon Marles-Wright
Part of the Subcellular Biochemistry book series (SCBI, volume 93)


The ability of biomolecules to link together to form higher order assemblies underlies much of cellular structure and function. Here we emphasise protein oligomerisation and discuss some of the principles of molecular interaction, from early considerations through to the present day. A few protein examples are presented, selected from our research interests, to highlight assembly features, ranging from the hemoglobins, the hemocyanins to the peroxiredoxins, collagen, the encapsulins and ferritins.


Protein Oligomerization Assembly Hemoglobin Hemocyanin Peroxiredoxin Collagen Encapsulin Ferritin 


  1. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36CrossRefPubMedPubMedCentralGoogle Scholar
  2. Afanasyev P, Seer-Linnemayr C, Ravelli RBG, Matadeen R, De Carlo S, Alewijnse B, Rodrigo V. Portugal RV, Pannu NS, Schatz M, van Heel M (2017) Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris haemoglobin. IUCrJ 4: 678–694Google Scholar
  3. Ahnert SE, Marsh JA, Hernández H, Robinson CV, Teichmann SA (2015) Principles of assembly reveal a periodic table of protein complexes. Science 350.
  4. Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, Baker D (2016) Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353:389–394CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bella J, Hulmes DJS (2017) Fibrillar collagens. In: Parry DAD, Squire JM (eds) Fibrous proteins: structures and mechanisms. Subcellular biochemistry vol. 82. Springer Nature, pp 457–490mGoogle Scholar
  6. Bernal JD, Crowfoot D (1934) X-ray photographs of crystalline pepsin. Nature 133:794–795CrossRefGoogle Scholar
  7. Borhani HA, Berghmans H, Trashin S, DeWael K, Fago A, Moens L, Habibi-Rezaei M, Dewilde S (2012) Kinetic properties and heme pocket structure of two domains of the polymeric hemoglobin of Artemia in comparison with the native molecule. Biochim Biophys Acta 1854:1307–1316Google Scholar
  8. Cao Z, Roszak AW, Gourlay LJ, Lindsay JG, Isaacs NW (2005) Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. Structure 13:1661–1664CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cao Z, McGow DP, Shepherd C, Lindsay JG (2015) Improved catenated structures of bovine Peroxiredoxin III F190L reveal details of ring-ring interactions and a novel conformational state. PLoS ONE 10(4):e0123303. Scholar
  10. Cao Z, Lindsay JG (2017) The peroxiredoxin family: an unfolding story. In: Harris JR, Marles-Wright J (eds) Macromolecular protein complexes. Springer Nature, pp 127–147Google Scholar
  11. Chen W-T, Chen Y-C, Liou H-H, Chao C-Y (2015) Structural basis for cooperative oxygen binding and bracelet-assisted assembly of Lumbricus terrestris haemoglobin. Scientific Reports 5:9494.
  12. De Carlo S, Harris JR (2011) Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 42:117–131CrossRefPubMedGoogle Scholar
  13. Doyle BB, Hukins DWL, Hulmes DJS, Miller A, Woodhead-Galloway J (1975) Collagen polymorphism: its origins in the amino acid sequence. J Mol Biol 91:79–99CrossRefPubMedGoogle Scholar
  14. Fitzpatrick AWP, Falcon, He S, Murzin AG, Murshudov G, Garringer HJ,- RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of Tau filaments from Alzheimer’s disease brain. Nature. 547(7662):185–190.
  15. Flohé L, Harris JR (2007) Peroxiredoxin systems, subcellular biochemistry, vol. 44. Springer, New YorkGoogle Scholar
  16. Gatsogiannis C, Hofnagel O, Markl J, Raunser S (2015) Structure of mega-hemocyanin reveals protein origami in snails. Structure 23:93–103CrossRefPubMedGoogle Scholar
  17. Gia Z, Matsuno A, Kato K, Kato S, Khan MRI, Shimizu T,Yoshioka T,Kato Y, Kishimura H, Kanno G, Miyabe Y, Terada T, Tanaka Y, Yao M (2015) Crystal structure of the 3.8-MDa respiratory supermolecule hemocyanin at 3.0 Å. Resolution Structure 23:2204–2212Google Scholar
  18. Giessen TW, Silver PA (2017) Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nature Microbiol 2 Article number: 17029.
  19. Grabowski M, Niedzialkowska E, Minor W (2016) The impact of structural genomics: the first quindecennial. J Struct Funct Genomics 17:1–16Google Scholar
  20. Green NM (1972) Analysis of the Structure of Complex Proteins by Electron Microscopy. In: Jaenicke R, Helmreich E (eds) Protein-protein interactions., Springer| Verlag, pp 183–211Google Scholar
  21. Green MN, Valentine R, Wrigley NG, Ahmad F, Jacobson B, Wood HG (1972) Transcarboxylase XI. Electron microscopy and subunit structure. J Biol Chem 247:6284–6298PubMedGoogle Scholar
  22. Green NM (1990) Avidin and streptavidin. Methods Enzymol 84:51–67CrossRefGoogle Scholar
  23. Harding MM, Crowfoot Hodgkin D, Kennedy AF (1966) The crystal structure of insulin ll. An investigation of rhombohedral zinc insulin crystals and a report of other crystalline forms. J Mol Biol 16:212–226CrossRefPubMedGoogle Scholar
  24. Harris JR (1968) Release of a macromolecular protein component from human erythrocyte ghosts. Biochim Biophys Acta 150:534–537CrossRefPubMedGoogle Scholar
  25. Harris JR (1969) The isolation and purification of a macromolecular protein component from the human erythrocyte ghost. Biochim Biophys Acta 188:31–42CrossRefPubMedGoogle Scholar
  26. Harris JR (2015) Transmission electron microscopy in molecular structural biology: a historical survey. Arch Biochem Biophys 581:3–18CrossRefPubMedGoogle Scholar
  27. Harris JR (2017) Visualizing in vitro type I collagen fibrillogenesis by transmission electron microscopy. In: Rittié L (ed) Fibrosis: methods and protocols. Methods in Molecular Biology, vol. 1627. Springer Science + Business Media LLC, pp 367–383Google Scholar
  28. Harris JR, De Carlo S (2014) Negative staining and Cryonegative staining. In: John Kuo (ed.), Electron microscopy: methods and protocols. Methods in Molecular Biology, vol. 1117. © Springer Science + Business Media, New York, pp 215–258.
  29. Harris JR, Naeem I (1978) The subunit composition of two high molecular weight extrinsic proteins from human erythrocyte membranes. Biochim Biophys Acta 537:495–500CrossRefPubMedGoogle Scholar
  30. Harris JR, Schroder E, Isupov MN, Scheffler D, Kristensen P, Littlechild JA, Vagin AA, Meissner U (2001) Comparison of the decameric structure of peroxiredoxin II by transmission electron microscopy and X-ray crystallography. Biochim Biophys Acta 1547:221–234CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harris JR, Meissner U, Gebauer W, Markl J (2004) 3D reconstruction of the hemocyanin subunit dimer from the chiton Acanthochiton fascicularis. Micron 35:23–26CrossRefPubMedPubMedCentralGoogle Scholar
  32. Harris JR, Lewis RJ (2016) The collagen type I segment long spacing (SLS) and fibrillar forms: formation by ATP and sulphonated diazo dyes. Micron 86:36–47CrossRefPubMedPubMedCentralGoogle Scholar
  33. Harris JR, Reiber A (2007) Influence of saline and pH on collagen type I fibrillogenesis in vitro: fibrin polymorphism and colloidal gold binding. Micron 38:115–521CrossRefGoogle Scholar
  34. Harris JR, Soliakov A, Lewis RJ (2013) In vitro fibrillogenesis of collagen type I in varying ionic and pH conditions. Micron 49:60–68CrossRefPubMedPubMedCentralGoogle Scholar
  35. He D, Hughes S, Vanden-Hehjir S, Georgiev A, Altenbach K,Tarrant E, MackaY cl, Waldron KJ, Clarke DJ (2016) Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments. eLIFE.
  36. Henderson R (2015) Overview and future of single particle electron cryomicroscopy. Arch Biochem Biophys 581:19–24CrossRefPubMedPubMedCentralGoogle Scholar
  37. Holmes DF, Kadler KE (2006) Collagen Fibril assembly in vitro. In: Harris R, Graham J, Rickwood D (eds) Cell biology protocols. Wiley, pp 375–378Google Scholar
  38. Huxley HE, Hanson EJ (1953) Structural basis of the cross-striations in muscle. Nature 172:530–532PubMedPubMedCentralGoogle Scholar
  39. Iadanza MG, Silvers R, Boardman J, Smith HI, Karamanos TK, Deb elouchina GT, Su Y, Griffin RG, Ranson NA, Radford SE (2018) The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nat Commun.
  40. Ji X, Axford D, Owen R, Evans G, Ginn HM, Sutton G, Stuart DI (2015) Polyhedra structures and the evolution of the insect viruses. J Struct Biol 192:88–99CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kato S, Matsui T, Gatsogiannis C, Tanaka Y (2017) Molluscan hemocyanin: structure, evolution, and physiology Biophys Rev.
  42. Kendrew JC, Dickerson RE, Hart RG, Davies DR, Phillips DC, Shore VG (1960) Structure of myoglobin: a three dimensional Fourier synthesis at 2 Å. Nature 185:422–427CrossRefPubMedGoogle Scholar
  43. Khoshouei M, Radjainia M, Phillips AJ, Gerrard JA, Mitra AK, Plitzko JM, Baumeister W, Danev R(2016) Volta phase plate cryo-EM of the small protein complex Prx3. Nature.|
  44. Laemli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  45. Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution Nature 353:815–821Google Scholar
  46. Manuguri V, Webster K, Yewdall NA, An Y, Venugopal H, Bhugra V, Turner A, Domigan LJ, Gerrard JA, Williams DE, Malamoström (2018) Assembly of protein stacks with in situ synthesized nanoparticle cargo. Nano Lett. 18:5138–5145.
  47. Markl J (2013) Evolution of molluscan hemocyanin structures. Biochim Biophys Acta 1834:1840–1852CrossRefPubMedPubMedCentralGoogle Scholar
  48. Martin AG, Depoix F, Stohr M, Meissner U, Hagner-Holler S, Hammouti K, Burmester T, Heyd J, Wriggers W, Markl J (2007) Limulus polyphemus Hemocyanin: 10 Å Cryo-EM structure, sequence analysis, molecular modelling and rigid-body fitting reveal the interfaces between the eight hexamers. J Mol Biol 366:1332–1350CrossRefPubMedPubMedCentralGoogle Scholar
  49. Marsh JA, Teichmann SA (2014) Structure, dynamics, assembly, and evolution of protein complexes. Ann Rev Biochem
  50. Matthews BW, Bernhard SA (1973) Structure and symmetry of oligomeric enzymes. Ann Rev Biophys Bioeng 2:257–317CrossRefGoogle Scholar
  51. McHugh CA, Fontana J, Nemecek D, Cheng N, Aksyuk AA, Heymann JB, Winkler DC, Lam AS, Wall JS, Steven AC, Hoiczyk E (2014) A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress. EMBO J 33:1891–1917CrossRefGoogle Scholar
  52. McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Meth Enzymol 579:1–16CrossRefPubMedGoogle Scholar
  53. Meissner U, Gatsogiannis C, Moeller A, Depoix F, Harris JR, Markl J (2007a) Comparative 11 Å structure of two molluscan hemocyanins from 3D cryo-electron microscopy. Micron 38:754–768CrossRefPubMedGoogle Scholar
  54. Meissner U, Schröder E, Scheffler D, Martin AG, Harris JR (2007b) Formation, TEM study and 3D reconstruction n of the human erythrocyte peroxiredoxin-2 dodecahedral higher-order assembly. Micron 38:29–39CrossRefPubMedGoogle Scholar
  55. Moon H, Lee J, Min J, Kang S (2014) Developing genetically engineered encapsulin protein cage nanoparticles as a targeted delivery nanoplatform. Biomacromol 15:3794–3801CrossRefGoogle Scholar
  56. Namba K, Hagiwara K, Tanaka H, Nakaishji Y (2005) Expression and molecular characterization of spherical particles derived from the genome of the hyperthermophilic euryarchaeote Pyrococcus furiosus. J Biochem 138:193–199CrossRefPubMedGoogle Scholar
  57. Nicholls RA, Tykac M, Kovalevskiy O, Murshudov GN (2018) Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-E. Acta Crystallog D74
  58. Oliver RM (1973) Negative stain electron microscopy of protein macromolecules. Meth Enzymol 27:617–672CrossRefGoogle Scholar
  59. Owen RL, Juanhuix J, Fuchs M (2016) Current advances in synchrotron radiation instrumentation for MX experiments. Arch Biochem Biophys 602:21–31CrossRefPubMedPubMedCentralGoogle Scholar
  60. Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North ACT (1960) Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature 185:416–422CrossRefPubMedGoogle Scholar
  61. Phillips AJ, Littlejohn J, Yewdall NA, Zhu T, Valéry C, Pearce FG, Mitra AK, Radjainia M, Gerrard JA (2014) Peroxiredoxin is a versatile self-assembling tecton for protein nanotechnology. Biomacromol 15:1871–1881CrossRefGoogle Scholar
  62. Rodis P, Hoff JE (1984) Naturally occurring protein crystals in the potato. Plant Physiol 74:907–911CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rousselot T, Jaenicke E, Lamkemeyer T, Harris JR, Pirow R (2006) Native and subunit molecular mass and quarternary structure of the hemoglobin from the primitive branchiopod crustacean Triops cancriformis. Febs J.
  64. Royer WE, Kristen Strand K, van Heel Hendrickson WA (2000) Structural hierarchy in erythrocruorin, the giant respiratory assemblage of annelids. Proc Natl Acad Sci 97:7107–7111CrossRefPubMedGoogle Scholar
  65. Ryle AP, Sanger F, Smith LF, Kitai R (1955) The disulphide bonds of insulin. Biochem J 60:541–556PubMedPubMedCentralGoogle Scholar
  66. Schroder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. Structure 8:605–615CrossRefPubMedGoogle Scholar
  67. Sigmund F, Massner C, Erdmann P, Stelzl A, Rolbieski H, Desai M, Bricault S, Wörner TP, Snijder J, Geerlof A, Fuchs H, Hrabĕ de Angelis M, Heck AJR, Jasanoff A, Ntziachristos V, Plitzko J, Westmeyer GG (2018) Bacterial encapsulins as orthogonal compartments for mammalian cell engineering. Nat Commun.
  68. Stahlberg H, Biyani N, Engel A (2015) 3D reconstruction if two-dimensional crystals. Arch Biochem Biophys 581:68–77CrossRefPubMedGoogle Scholar
  69. Sutter M, Boehringer D, Gutmann S, Günther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15:939–947. Scholar
  70. Tamura A, Fukutani Y, Takami T, Fujii M, Nakaguchi Y, Murakami Y, Noguchi K, Yohda M, Odaka M (2014) Packaging guest proteins into the encapsulin nanocompartment from Rhodococcus erythropolis N771. Biotechnol Bioeng 112:13–20CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tatur J, Hagen WR, Matias PM (2007) Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. J Biol Inorg Chem 12:615–630Google Scholar
  72. Van Bruggen EFJ, Wiebenga EH, Gruber M (1960) Negative staining electron microscopy of proteins at pH values below their isoelectric points; its application to haemocyanin. Biochim Biophys Acta 42:171–172CrossRefGoogle Scholar
  73. Van Bruggen EFJ, Schutter WG, van Breemen JFL, Bijlholt MMC, Wichertjes T (1981) Arthropodan and Molluscan Hemocyanins. In Harris jr (ed) Electron microscopy of proteins, vol. 1. Academic Press, London, pp 3–38Google Scholar
  74. Valentine RC, Green NM (1967) Electron microscopy of an antibody-hapten complex. J Mol Biol 27:615–617CrossRefPubMedPubMedCentralGoogle Scholar
  75. Vinothkumar KR, Henderson R (2016) Single particle electron cryomicroscopy: trends, issues and future perspective. Quart Rev Biophys 49:e13, page 1 of 25.
  76. Wood Z, Harris JR, Schröder E, Poole L (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yewdall NA, Peskin AV, Hampton MB, Goldstone DC, Pearce FG, Gerrard JA (2018a) Niochem Biophys Res Commun 497:558–563CrossRefGoogle Scholar
  78. Yewdall NA, Allison TM, Pearce FG, Robinson CV, Gerrard JA (2018b) Self-assembly of toroidal proteins explored using native mass spectrometry. Chem Sci.
  79. Zivanov J, Nakane T, Forsberg BO, Kimanius D, Lindahl E, Scheres SHW (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3 eLife 7:e42166.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Molecular PhysiologyUniversity of MainzMainzGermany
  2. 2.School of BiologyNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations