Perturbation-Evoked Potentials: Future Usage in Human-Machine Interaction

  • Jonas C. Ditz
  • Gernot R. Müller-PutzEmail author
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 32)


Brain-computer interfaces (BCIs) can be used to improve human-machine interactions (HMIs) by providing implicit information about the mental state. We introduce a brain activity, perturbation-evoked potentials (PEPs), that was not yet investigated in the context of BCIs although it has the required properties. An experimental setup for studying PEPs is proposed and validated and two possible use cases for this brain activity are introduced.


Passive brain-computer interface Perturbation-evoked potential Human-machine interaction Rehabilitation Assistive device 


  1. 1.
    Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.CrossRefGoogle Scholar
  2. 2.
    Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., & Rupp, R. (2005). EEG-based neuroprosthesis control: A step towards clinical practice. Neuroscience Letters, 382(1–2), 169–174.CrossRefGoogle Scholar
  3. 3.
    Leeb, R., Friedman, D., Müller-Putz, G. R., Scherer, R., Slater, M., & Pfurtscheller, G. (2007). Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: A case study with a tetraplegic. Computational Intelligence and Neuroscience.Google Scholar
  4. 4.
    Pfurtscheller, G., Müller-Putz, G. R., Scherer, R., & Neuper, C. (2008). Rehabilitation with brain-computer interface systems. Computer, 41(10), 58–65.CrossRefGoogle Scholar
  5. 5.
    Müller-Putz, G. R., Riedl, R., & Wriessnegger, S. C. (2015). Electroencephalography (EEG) as a research tool in the information systems discipline: Foundations, measurement, and applications. CAIS, 37, 46.CrossRefGoogle Scholar
  6. 6.
    Bauernfeind, G., Wriessnegger, S., & Müller-Putz, G. (2014). Using near-infrared spectroscopy (NIRS) for brain-computer interface (BCI) systems. In Human Cognitive Neurophysiology.Google Scholar
  7. 7.
    Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W., et al. (2004). Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Transactions on Biomedical Engineering, 51(6), 966–970.CrossRefGoogle Scholar
  8. 8.
    Brunner, P., Ritaccio, A. L., Emrich, J. F., Bischof, H., & Schalk, G. (2011). Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG). Frontiers in Neuroscience, 5, 5.CrossRefGoogle Scholar
  9. 9.
    Wodlinger, B., Downey, J. E., Tyler-Kabara, E. C., Schwartz, A. B., Boninger, M. L., & Collinger, J. L. (2014). Ten-dimensional anthropomorphic arm control in a human brain−machine interface: Difficulties, solutions, and limitations. Journal of Neural Engineering, 12(1), 016011.CrossRefGoogle Scholar
  10. 10.
    Fernández, E., Greger, B., House, P. A., Aranda, I., Botella, C., Albisua, J., et al. (2014). Acute human brain responses to intracortical microelectrode arrays: Challenges and future prospects. Frontiers in Neuroengineering, 7, 24.CrossRefGoogle Scholar
  11. 11.
    Sellers, E. W., & Donchin, E. (2006). A P300-based brain–computer interface: Initial tests by ALS patients. Clinical Neurophysiology, 117(3), 538–548.CrossRefGoogle Scholar
  12. 12.
    Pereira, J., Ofner, P., Schwarz, A., Sburlea, A. I., & Müller-Putz, G. R. (2017). EEG neural correlates of goal-directed movement intention. Neuroimage, 149, 129–140.CrossRefGoogle Scholar
  13. 13.
    Müller-Putz, G. R., Scherer, R., Neuper, C., & Pfurtscheller, G. (2006). Steady-state somatosensory evoked potentials: Suitable brain signals for brain-computer interfaces? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(1), 30–37.CrossRefGoogle Scholar
  14. 14.
    Zander, T. O., Kothe, C. A., Welke, S., & Rötting, M. (2008). Enhancing human–machine systems with secondary input from passive brain–computer interfaces. In Proceedings of the 4th International Brain–Computer Interface Workshop & Training Course (pp. 144–149). Graz, Austria: Verlag der Technischen Universität Graz.Google Scholar
  15. 15.
    Zander, T. O., Krol, L. R., Birbaumer, N. P., & Gramann, K. (2016). Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity. Proceedings of the National Academy of Sciences, 113(52), 14898–14903.CrossRefGoogle Scholar
  16. 16.
    Parra, L. C., Spence, C. D., Gerson, A. D., & Sajda, P. (2003). Response error correction-a demonstration of improved human-machine performance using real-time EEG monitoring. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 173–177.CrossRefGoogle Scholar
  17. 17.
    Bos, D. P. O., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., & Poel, M., et al. (2010). Brain-computer interfacing and games. In Brain-computer interfaces (pp. 149–178). London: Springer.Google Scholar
  18. 18.
    Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679.CrossRefGoogle Scholar
  19. 19.
    Varghese, J. P., McIlroy, R. E., & Barnett-Cowan, M. (2017). Perturbation-evoked potentials: Significance and application in balance control research. Neuroscience and Biobehavioral Reviews, 83, 267–280.CrossRefGoogle Scholar
  20. 20.
    Dietz, V., Quintern, J., & Berger, W. (1984). Cerebral evoked potentials associated with the compensatory reactions following stance and gait perturbation. Neuroscience Letters, 50(1–3), 181–186.CrossRefGoogle Scholar
  21. 21.
    Duckrow, R. B., Abu-Hasaballah, K., Whipple, R., & Wolfson, L. (1999). Stance perturbation-evoked potentials in old people with poor gait and balance. Clinical Neurophysiology, 110(12), 2026–2032.CrossRefGoogle Scholar
  22. 22.
    Adkin, A. L., Quant, S., Maki, B. E., & McIlroy, W. E. (2006). Cortical responses associated with predictable and unpredictable compensatory balance reactions. Experimental Brain Research, 172(1), 85.CrossRefGoogle Scholar
  23. 23.
    Mochizuki, G., Sibley, K. M., Cheung, H. J., Camilleri, J. M., & McIlroy, W. E. (2009). Generalizability of perturbation-evoked cortical potentials: Independence from sensory, motor and overall postural state. Neuroscience Letters, 451(1), 40–44.CrossRefGoogle Scholar
  24. 24.
    Quant, S., Adkin, A. L., Staines, W. R., & McIlroy, W. E. (2004). Cortical activation following a balance disturbance. Experimental Brain Research, 155(3), 393–400.CrossRefGoogle Scholar
  25. 25.
    Marlin, A., Mochizuki, G., Staines, W. R., & McIlroy, W. E. (2014). Localizing evoked cortical activity associated with balance reactions: Does the anterior cingulate play a role? American Journal of Physiology-Heart and Circulatory Physiology.Google Scholar
  26. 26.
    Staines, R. W., McIlroy, W. E., & Brooke, J. D. (2001). Cortical representation of whole-body movement is modulated by proprioceptive discharge in humans. Experimental Brain Research, 138(2), 235–242.CrossRefGoogle Scholar
  27. 27.
    Dietz, V., Quintern, J., Berger, W., & Schenck, E. (1985). Cerebral potentials and leg muscle emg responses associated with stance perturbation. Experimental Brain Research, 57(2), 348–354.CrossRefGoogle Scholar
  28. 28.
    Quintern, J., Berger, W., & Dietz, V. (1985). Compensatory reactions to gait perturbations in man: Short-and long-term effects of neuronal adaptation. Neuroscience Letters, 62(3), 371–375.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Graz University of TechnologyGrazAustria

Personalised recommendations