Advertisement

Facility for Turbulence Generation

  • Luis Blay EstebanEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents an experimental facility designed to generate and control turbulence in a laboratory. This consists of a modified version of the random jet array (RJA) proposed in Bellani and Variano (Exp Fluids 55:1646–1666, 2013, [1]) that allows us to generate homogeneous and anisotropic turbulence. Moreover, this zero-mean flow facility can be used to investigate the temporal decay of turbulence without invoking Taylor’s hypothesis. Thus, the aim of this chapter is twofold: first present the facility designed and second investigate the evolution of anisotropic turbulence over time and evaluate the spatial confinement effect. Once these two questions are answered we will have the tools to examine how different turbulent flows modify the descent style of large inertial particles; and this, at the same time will give us some insight into the particle behaviour inside Aquavitrum’s tank. This chapter is structured as follows; in Sect. 3.1 we introduce zero-mean flow facilities used to generate turbulence and we detail experimental and numerical results on the decay of turbulence with and without confinement effects, in Sect. 3.2 we present the experimental setup and the measurement technique, Sects. 3.3 and 3.4 show the results for stationary and decay turbulence, respectively, and we conclude in Sect. 3.5.

References

  1. 1.
    Bellani G, Variano EA (2013) Homogeneity and isotropy in a laboratory turbulent flow. Exp Fluids 55:1646–1666CrossRefGoogle Scholar
  2. 2.
    Makita H (1991) Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn Res 8:53–64CrossRefGoogle Scholar
  3. 3.
    Mydlarski L, Warhaft Z (1996) On the onset of high-Reynolds number grid-generated wind tunnel turbulence. J Fluid Mech 320:331–368CrossRefGoogle Scholar
  4. 4.
    Mydlarski L, Warhaft Z (1998) Passive scalar statistics in high-peclet-number grid turbulence. J Fluid Mech 358:135–175CrossRefGoogle Scholar
  5. 5.
    Kang HS, Chester S, Meneveau C (2003) Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J Fluid Mech 480:129–160MathSciNetCrossRefGoogle Scholar
  6. 6.
    Larssen JV, Devenport WJ (2011) On the generation of large-scale homogeneous turbulence. Exp Fluids 50:1207–1223CrossRefGoogle Scholar
  7. 7.
    Kistler AL, Vrebalovich T (1966) Grit turbulence at large Reynolds numbers. J Fluid Mech 26:37–47CrossRefGoogle Scholar
  8. 8.
    Bodenschatz E, Bewley GP, Nobach H, Sinhuber M, Xu H (2014) Variable density turbulence tunnel facility. Rev Sci Instrum 85(093908):331–368Google Scholar
  9. 9.
    McDougall TJ (1979) Measurements of turbulence in a zero-mean shear mixed layer. J Fluid Mech 94:409–431CrossRefGoogle Scholar
  10. 10.
    De Silva I, Fernando H (1994) Oscillating grids as a source of nearly isotropic turbulence. Phys Fluids 6:2455–2464CrossRefGoogle Scholar
  11. 11.
    McKenna SP, McGillis WR (2004) Observations of flow repeatability and secondary circulation in an oscillating grid-stirred tank. Phys Fluids 16:3499–3502CrossRefGoogle Scholar
  12. 12.
    Marie L, Daviaud F (2004) Experimental measurement of the scale-by-scale momentum transport budget in a turbulent shear flow. Phys Fluids 16:457–461CrossRefGoogle Scholar
  13. 13.
    Volk R, Odier P, Pinton JF (2006) Fluctuation of magnetic induction in von Karman swirling flows. Phys Fluids 18:085105MathSciNetCrossRefGoogle Scholar
  14. 14.
    Blum DB, Bewley GP, Bodenschatz E, Gibert M, Gylfason A, Mydlarski L, Voth GA, Xu H, Yeung PK (2011) Signatures of non-universal large scales in conditional structure functions from various turbulent flows. New J Phys 13(113020)CrossRefGoogle Scholar
  15. 15.
    Hwang W, Eaton JK (2004) Creating homogeneous and isotropic turbulence without a mean flow. Exp Fluids 36:444–454CrossRefGoogle Scholar
  16. 16.
    Webster DR, Brathwaite A, Yen J (2004) A novel laboratory apparatus for simulating isotropic oceanic turbulence at low Reynolds number. Limnol Oceanogr Methods 2:1–12CrossRefGoogle Scholar
  17. 17.
    Warnaars TA, Hondzo M, Carper MA (2006) A desktop apparatus for studying interactions between microorganisms and small-scale fluid motion. Hydrobiologia 563:431–443CrossRefGoogle Scholar
  18. 18.
    Lu J, Fugal JP, Nordsiek H, Saw EW, Shaw RA, Yang W (2008) Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New J Phys 10:125013CrossRefGoogle Scholar
  19. 19.
    Goepfert C, Marie JL, Chareyron D, Lance M (2010) Characterization fo a system generating a homogeneous isotropic turbulence field by free synthetic jets. Exp Fluids 48:809–822CrossRefGoogle Scholar
  20. 20.
    Chang K, Bewley GP, Bodenschatz E (2012) Experimental study of the influence of anisotropy on the inertial scales of turbulence. J Fluid Mech 692:464–481CrossRefGoogle Scholar
  21. 21.
    Zimmermann R, Xu H, Gasteuil Y, Bourgoin M, Volk R, Pinton JF, Bodenschatz E (2010) The Lagrangian exploration module: an apparatus for the study of statistically homogeneous and isotropic turbulence. Rev Sci Instrum 81(055112)CrossRefGoogle Scholar
  22. 22.
    Dou Z, Pecenak ZK, Cao L, Woodward SH, Liang Z, Meng H (2016) PIV measurement of high-Reynolds-number homogeneous and isotropic turbulence in an enclosed flow apparatus with fan agitation. Meas Sci Technol 27(3):035305CrossRefGoogle Scholar
  23. 23.
    Variano EA, Bodenschatz E, Cowen EA (2004) A random synthetic jet array driven turbulence tank. Exp Fluids 37:613–615CrossRefGoogle Scholar
  24. 24.
    Lavertu TM, Mydlarski L, Gaskin SJ (2006) Differential diffusion of high-Schmidt-number passive scalars in a turbulent jet. J Fluid Mech 612:439–475CrossRefGoogle Scholar
  25. 25.
    Variano EA, Cowen EA (2008) A random-jet-stirred turbulence tank. J Fluid Mech 604:1–32CrossRefGoogle Scholar
  26. 26.
    Delbos S, Weitbrecht V, Bleninger T, Grand PP, Chassaing E, Lincot D, Kerrec O, Jirka GH (2009) Homogeneous turbulence at an electrodeposition surface induced by randomly firing jet arrays. Exp Fluids 46:1105–1115CrossRefGoogle Scholar
  27. 27.
    Khorsandi B, Gaskin S, Mydlarski L (2013) Effect of background turbulence on an axisymmetric turbulent jet. J Fluid Mech 736:250–286CrossRefGoogle Scholar
  28. 28.
    Carter D, Petersen A, Amili O, Coletti F (2016) Generating and controlling homogeneous air turbulence using random jet arrays. Exp Fluids 57:189CrossRefGoogle Scholar
  29. 29.
    Von Karman T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc Lond A 164:192–215CrossRefGoogle Scholar
  30. 30.
    Compte-Bellot G, Corrsin S (1966) The use of a contraction to improve the isotropy of grid-generated turbulence. J Fluid Mech 62:115–143Google Scholar
  31. 31.
    George WK (1992) Locally axisymmetric turbulence. Phys Fluids A 4:1492MathSciNetCrossRefGoogle Scholar
  32. 32.
    Uberoi MS, Wallis S (1967) Effect of grid geometry on turbulence decay. Phys Fluids 10:1216–1224CrossRefGoogle Scholar
  33. 33.
    Ling SC, Wang CA (1972) Decay of isotropic turbulence generated by a mechanically agitated grid. Phys Fluids 15:1363–1369CrossRefGoogle Scholar
  34. 34.
    el Hak MG, Corrsin S (1974) Measurements of the nearly isotropic turbulence behind a uniform jet grid. J Fluid Mech 62:115–143CrossRefGoogle Scholar
  35. 35.
    Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond 164:421–444CrossRefGoogle Scholar
  36. 36.
    Lavoie P, Djenidi L, Antonia RA (2007) Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech 585:395–420CrossRefGoogle Scholar
  37. 37.
    Krogstad PA, Davidson PA (2011) Freely decaying, homogeneous turbulence generated by multi-scale grids. J Fluid Mech 680:417–434CrossRefGoogle Scholar
  38. 38.
    Valente PC, Vassilicos JC (2012) Dependence of decaying homogeneous isotropic turbulence on inflow conditions. Phys Lett A 376:510–514CrossRefGoogle Scholar
  39. 39.
    Hearst RJ, Lavoie P (2014) Decay of turbulence generated by a square-fractal-element grid. J Fluid Mech 741:567–584CrossRefGoogle Scholar
  40. 40.
    Valente PC, Vassilicos JC (2011) The decay of turbulence generated by a class of multiscale grids. J Fluid Mech 687:300–340CrossRefGoogle Scholar
  41. 41.
    Huang MJ, Leonard A (1994) Power-law decay of homogeneous turbulence at low Reynolds numbers. Phys Fluids 6:3765–3775CrossRefGoogle Scholar
  42. 42.
    de Bruyn Kops SM, Riley JJ (1998) Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys Fluids 10:2125–2127CrossRefGoogle Scholar
  43. 43.
    Wray A (1998) Decaying isotropic turbulence. Technical report, AGARD advisory reportGoogle Scholar
  44. 44.
    Antonia RA, Orlandi P (2004) Similarity of decaying isotropic turbulence with a passive scalar. J Fluid Mech 505:123–151CrossRefGoogle Scholar
  45. 45.
    Burattini P, Lavoie P, Agrawal A, Djenidi L, Antonia RA (2006) On the power law of decaying homogeneous isotropic turbulence at low Reynolds number. Phys Rev E 73:066304CrossRefGoogle Scholar
  46. 46.
    Goto S, Vassilicos JC (2016) Unsteady turbulence cascades. Phys Rev E 94:053108CrossRefGoogle Scholar
  47. 47.
    Taylor GI (1935) Statistical theory of turbulence. Proc R Soc A 151:421–444CrossRefGoogle Scholar
  48. 48.
    Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds. C R Acad Sci URSS 30:301MathSciNetGoogle Scholar
  49. 49.
    Meldi M (2016) The signature of initial production mechanisms in isotropic turbulence decay. Phys Fluids 28:035105CrossRefGoogle Scholar
  50. 50.
    Hurst DJ, Vassilicos JC (2007) Scalings and decay of fractal-generated turbulence. Phys Fluids 19:035103CrossRefGoogle Scholar
  51. 51.
    Mazellier N, Vassilicos JC (2010) Turbulence without Richardson-Kolmogorov cascade. Phys Fluids 22:075101CrossRefGoogle Scholar
  52. 52.
    Meldi M, Lejemble H, Sagaut P (2014) On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence. J Fluid Mech 756:816–843MathSciNetCrossRefGoogle Scholar
  53. 53.
    Skrbek L, Stalp SR (2000) On the decay of homogeneous isotropic turbulence. Phys Rev Lett 12:1997–2019zbMATHGoogle Scholar
  54. 54.
    Touil H, Bertoglio JP, Shao L (2002) The decay of turbulence in a bounded domain. J Turbul 3:049MathSciNetCrossRefGoogle Scholar
  55. 55.
    Biferale L, Boffetta G, Celani A, Lanotte A, Toschi F, Vergassola M (2003) The decay of homogeneous anisotropic turbulence. Phys Fluids 15:2105–2112MathSciNetCrossRefGoogle Scholar
  56. 56.
    Hellström LHO, Zlatinov MB, Cao G, Smits AJ (2013) Turbulent pipe flow downstream of a 90 bend. J Fluid Mech 735(R7):1–12zbMATHGoogle Scholar
  57. 57.
    Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, CambridgeGoogle Scholar
  58. 58.
    Ganapathisubramani B, Lakshminarasimhan K, Clemens NT (2007) Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet. Exp Fluids 42:923–939CrossRefGoogle Scholar
  59. 59.
    Alvarado AP, Mydlarski L, Gaskin S (2016) Effect of the driving algorithm on the turbulence generated by a random jet array. Exp Fluids 57:20–32CrossRefGoogle Scholar
  60. 60.
    George WK, Hussein HJ (1991) Locally axisymmetric turbulence. J Fluid Mech 223:1–23CrossRefGoogle Scholar
  61. 61.
    Saarenrinne P, Piirto M (2000) Turbulent kinetic energy dissipation rate estimation from PIV velocity vector fields. Exp Fluids 29:300–307CrossRefGoogle Scholar
  62. 62.
    Tanaka T, Eaton JK (2007) A correction method for measuring turbulence kinetic energy dissipation rate by PIV. Exp Fluids 42:893–902CrossRefGoogle Scholar
  63. 63.
    de Jong J, Cao L, Woodward SH, Salazar JPLC, Collins LR, Meng H (2009) Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp Fluids 46:499–515CrossRefGoogle Scholar
  64. 64.
    Buxton ORH, Laizet S, Ganapathisubramani B (2011) Dissipation rate estimation from PIV in zero-mean isotropic turbulence. Exp Fluids 51:1417–1437CrossRefGoogle Scholar
  65. 65.
    Antonia RA, Satyaprakash BR, Hussain AKMF (1982) Statistics of fine-scale velocity in turbulent plane and circular jets. J Fluid Mech 119:55–89CrossRefGoogle Scholar
  66. 66.
    Sreenivasan KR (1984) On the scaling of the energy dissipation rate. Phys Fluids 27:1048CrossRefGoogle Scholar
  67. 67.
    Sreenivasan KR (1998) An update on the energy dissipation rate in isotropic turbulence. Phys Fluids 108:528MathSciNetCrossRefGoogle Scholar
  68. 68.
    Burattini P, Lavoie P, Antonia RA (2005) On the normalized turbulent energy dissipation rate. Phys Fluids 17:098103MathSciNetCrossRefGoogle Scholar
  69. 69.
    Meldi M, Sagaut P (2017) Turbulence in a box: quantification of large-scale resolution effects in isotropic turbulence free decay. J Fluid Mech 818:697–715MathSciNetCrossRefGoogle Scholar
  70. 70.
    Vassilicos JC (2015) Dissipation in turbulent flows. Annu Rev Fluid Mech 47:95–114MathSciNetCrossRefGoogle Scholar
  71. 71.
    Meldi M, Sagaut P (2014) On non-self-similar regimes in homogeneous isotropic turbulence decay. J Fluid Mech 711:364–393MathSciNetCrossRefGoogle Scholar
  72. 72.
    Perot JB (2011) Determination of the decay exponent in mechanically stirred isotropic turbulence. AIP Adv 1:022104CrossRefGoogle Scholar
  73. 73.
    Meldi M, Sagaut P, Lucor D (2011) A stochastic view of isotropic turbulence decay. J Fluid Mech 668:351–362CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Aero and Astro EngineeringUniversity of SouthamptonSouthamptonUK

Personalised recommendations