Data Quality Transaction on Different Distributed Ledger Technologies

  • Chao WuEmail author
  • Liyi Zhou
  • Chulin Xie
  • Yuhang Zheng
  • Jiawei Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11473)


Data quality is a bottleneck for efficient machine-to-machine communication without human intervention in Industrial Internet of Things (IIoT). Conventional centralised data quality management (DQM) approaches are not tamper-proof. They require trustworthy and highly skilled intermediation, and can only access and use data from limited data sources. This does not only impacts the integrity and availability of the IIoT data, but also makes the DQM process time and resource consuming. To address this problem, a blockchain based DQM platform is proposed in this paper, which aims to enable tamper-proof data transactions in a decentralised and trustless environment. To fit for different quality requirements, our platform supports customisable smart contracts for quality assurance. And to improve our platform’s performance, we discuss and analyze different distributed ledger technologies.


Data quality IIoT Blockchain IPFS Smart contract DAG IOTA 



This work is supported by Cybervein-ZJU Joint Lab, Fundamental Research Funds for the Central Universities, Artificial Intelligence Research Foundation of Baidu Inc, Program of ZJU Tongdun Joint Research Lab.

Supplementary material


  1. 1.
    Recommended elliptic curve domain parameters, version 2.0. Certicom ResearchGoogle Scholar
  2. 2.
    FIPS 180–4. Secure hash standards, federal information processing standards publication 180–4. National Institute of Standards and Technology (2013)Google Scholar
  3. 3.
    Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Comput. Surv. (CSUR) 36(4), 335–371 (2004)CrossRefGoogle Scholar
  4. 4.
    Ballou, D.P., Tayi, G.K.: Enhancing data quality in data warehouse environments. Commun. ACM 42(1), 73–78 (1999) CrossRefGoogle Scholar
  5. 5.
    Bano, S., Al-Bassam, M., Danezis, G.: The road to scalable blockchain designs (2017)Google Scholar
  6. 6.
    Bano, S., et al.: Consensus in the age of blockchains. arXiv preprint arXiv:1711.03936 (2017)
  7. 7.
    Batini, C., Scannapieco, M.: Data and Information Quality - Dimensions, Principles and Techniques. Data-Centric Systems and Applications. Springer, Cham (2016). Scholar
  8. 8.
    Baumgart, I., Mies, S.: S/kademlia: a practicable approach towards secure key-based routing. In: 2007 International Conference on Parallel and Distributed Systems, pp. 1–8. IEEE (2007)Google Scholar
  9. 9.
    Benet, J.: IPFS-content addressed, versioned, P2P file system. arXiv preprint arXiv:1407.3561 (2014)
  10. 10.
    Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on Distributed Cryptocurrencies and Consensus Ledgers, vol. 310 (2016)Google Scholar
  11. 11.
    Conoscenti, M., Vetro, A., De Martin, J.C.: Blockchain for the internet of things: a systematic literature review. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pp. 1–6. IEEE (2016)Google Scholar
  12. 12.
    Gaetani, E., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., Sassone, V.: Blockchain-based database to ensure data integrity in cloud computing environments (2017)Google Scholar
  13. 13.
    Environmental Research Group and King’s College. Air quality by local authorityGoogle Scholar
  14. 14.
    Heckman, J.R., Boehmer, E.L., Peters, E.H., Davaloo, M., Kurup, N.G.: A pricing model for data markets. In: iConference 2015 Proceedings (2015)Google Scholar
  15. 15.
    Helu, M., Libes, D., Lubell, J., Lyons, K., Morris, K.C.: Enabling smart manufacturing technologies for decision-making support. In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V01BT02A035. American Society of Mechanical Engineers (2016)Google Scholar
  16. 16.
    Howard, J.H., et al.: Scale and performance in a distributed file system. ACM Trans. Comput. Syst. (TOCS) 6(1), 51–81 (1988)MathSciNetCrossRefGoogle Scholar
  17. 17.
    IOTA: Iota documents. Accessed 16 Nov 2018
  18. 18.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  19. 19.
    Red, V.A.: Practical comparison of distributed ledger technologies for IoT. In: Disruptive Technologies in Sensors and Sensor Systems, vol. 10206, p. 102060G. International Society for Optics and Photonics (2017)Google Scholar
  20. 20.
    Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc., Sebastopol (2015)Google Scholar
  21. 21.
    Wang, R.Y., Reddy, M.P., Kon, H.B.: Toward quality data: an attribute-based approach. Decis. Support Syst. 13(3–4), 349–372 (1995) CrossRefGoogle Scholar
  22. 22.
    Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)Google Scholar
  23. 23.
    Xavier, B., Christopher, C., Thomas, H.: Blockchain-free cryptocurrencies. A rational framework for truly decentralised fast transactions. Inf. Syst., 45–90 (2015)Google Scholar
  24. 24.
    Yu, H., Zhang, M.: Data pricing strategy based on data quality. Comput. Ind. Eng. 112, 1–10 (2017)CrossRefGoogle Scholar
  25. 25.
    Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology: architecture, consensus, and future trends. In: 2017 IEEE International Congress on Big Data (BigData Congress), pp. 557–564. IEEE (2017)Google Scholar
  26. 26.
    Zyskind, G., Nathan, O., et al.: Decentralizing privacy: using blockchain to protect personal data. In: 2015 IEEE of Security and Privacy Workshops (SPW), pp. 180–184. IEEE (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chao Wu
    • 1
    Email author
  • Liyi Zhou
    • 1
  • Chulin Xie
    • 1
  • Yuhang Zheng
    • 1
  • Jiawei Yu
    • 1
  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations