Types of Mimetics for the Design of Intelligent Technologies

  • Antero KarvonenEmail author
  • Tuomo Kujala
  • Pertti Saariluoma
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1026)


Mimetic design means using a source in the natural or artificial worlds as an inspiration for technological solutions. It is based around the abstraction of the relevant operating principles in a source domain. This means that one must be able to identify the correct level of analysis and extract the relevant patterns. How this should be done is based on the type of source. From a mimetic perspective, if the design goal is intelligent technology, an obvious source of inspiration is human information processing, which we have called cognitive mimetics. This article offers some conceptual clarification on the nature of cognitive mimetics by contrasting it with biomimetics in the context of intelligent technology. We offer a two-part ontology for cognitive mimetics, suggest an approach and discuss possible implications for AI in general.


Intelligent technology Design methods Design mimetics AI 


  1. 1.
    Holyoak, K.J., Thagard, P.: Mental Leaps: Analogy in Creative Thought. The MIT Press, Cambridge (1995)Google Scholar
  2. 2.
    Kujala, T., Saariluoma, P.: Cognitive mimetics for designing intelligent technologies. Adv. Hum. Comput. Interact. (2018)Google Scholar
  3. 3.
    Saariluoma, P., Kujala, T., Karvonen, A., Ahonen M.: Cognitive mimetics - main ideas. In: Proceedings on the International Conference on Artificial Intelligence (ICAI), pp. 202–206. The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp) (2018)Google Scholar
  4. 4.
    Saariluoma, P., Karvonen, A., Wahlström, M., Happonen, K., Puustinen, R., Kujala, T.: Challenge of tacit knowledge in acquiring information in cognitive mimetics. In: Karwowski, W., Ahram, T. (eds.) Intelligent Human Systems Integration 2019. IHSI 2019. Advances in Intelligent Systems and Computing, vol. 903. Springer (2019)Google Scholar
  5. 5.
    Simon, H.A.: The Sciences of the Artificial. The MIT Press, Cambridge (1981)Google Scholar
  6. 6.
    Dym, C.L., Brown, D.C.: Engineering Design: Representation and Reasoning. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  7. 7.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic Approach. Springer, Berlin (2007)CrossRefGoogle Scholar
  8. 8.
    Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill, New York (2011)Google Scholar
  9. 9.
    Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Oxford (1972)Google Scholar
  10. 10.
    Saariluoma, P.: Chess Players’ Thinking. Routledge, London (1995)Google Scholar
  11. 11.
    Duncker, K.: On problem-solving. Psychological Monographs, vol. 58, pp. 1–113 (1945)CrossRefGoogle Scholar
  12. 12.
    Wertheimer, M.: Productive Thinking. Greenwood, Westport (1945)Google Scholar
  13. 13.
    Fayemi, P.E., Wanieck, K., Zollfrank, C., Maranzana, N., Aoussat, A.: Biomimetics: process, tools and practice. Bioinspiration Biomimetics 12(1) (2017)CrossRefGoogle Scholar
  14. 14.
    Drack, M., Limpinsel, M., de Bruyn, G., Nebelsick, J., Betz, O.: Towards a theoretical clarification of biomimetics using conceptual tools from engineering design. Bioinspiration Biomimetics 13 (2017)CrossRefGoogle Scholar
  15. 15.
    Vincent, J.F., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., Pahl, A.K.: Biomimetics: its practice and theory. J. Roy. Soc. Interface 3, 471–482 (2006)CrossRefGoogle Scholar
  16. 16.
    Floridi, L.: The logic of design as a conceptual logic of information. Mind. Mach. 27(3), 495–519 (2017)CrossRefGoogle Scholar
  17. 17.
    Bonser, R.H.C.: Patented biologically-inspired technological innovations: a twenty year view. J. Bionic Eng. 3(1), 39–41 (2006)CrossRefGoogle Scholar
  18. 18.
    Lepora, N.F., Verschure, P., Prescott, T.J.: The state of the art in biomimetics. Bioinspiration Biomimetics 8 (2013)CrossRefGoogle Scholar
  19. 19.
    Kar, A.K.: Bio inspired computing–a review of algorithms and scope of applications. Expert Syst. Appl. 59, 20–32 (2016)CrossRefGoogle Scholar
  20. 20.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)CrossRefGoogle Scholar
  22. 22.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  23. 23.
    Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press (2005)Google Scholar
  24. 24.
    Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017)CrossRefGoogle Scholar
  25. 25.
    Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. In: Proceedings of the London Mathematical Society, vol. 42, pp. 230–265, July 1936MathSciNetCrossRefGoogle Scholar
  26. 26.
    De Groot, A.D.: Thought and Choice in Chess. Mounton, The Hague (1965)Google Scholar
  27. 27.
    Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search. Philos. Psychol. 407 (1975)Google Scholar
  28. 28.
    Buchanan, B.G., Davis, R., Feigenbaum, E.A.: Expert systems: a perspective from computer science. In: Ericsson, K.A, Hoffman, R.R., Kozbelt, A., Williams, A.M. (eds.) The Cambridge Handbook of Expertise and Expert Performance, 2nd edn., pp. 84–104. Cambridge University Press (2018)Google Scholar
  29. 29.
    Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. 40 (2017)Google Scholar
  30. 30.
    Nagel, J., Schmidt, L., Born, W.: Establishing analogy categories for bio-inspired design. Designs 2(4), 47 (2018)CrossRefGoogle Scholar
  31. 31.
    Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036 (2004)CrossRefGoogle Scholar
  32. 32.
    Price, C.J., Friston, K.J.: Functional ontologies for cognition: the systematic definition of structure and function. Cogn. Neuropsychol. 22(3–4), 262–275 (2005)CrossRefGoogle Scholar
  33. 33.
    Saariluoma, P.: Foundational Analysis: Presuppositions in Experimental Psychology. Routledge, London (1997)Google Scholar
  34. 34.
    Ericsson, K.A., Lehmann, A.C.: Expert and exceptional performance: evidence of maximal adaptation to task constraints. Annu. Rev. Psychol. 47(1), 273–305 (1996)CrossRefGoogle Scholar
  35. 35.
    Russell, S.: Rationality and intelligence: a brief update. In: Fundamental Issues of Artificial Intelligence, pp. 7–28. Springer (2016)Google Scholar
  36. 36.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Antero Karvonen
    • 1
    Email author
  • Tuomo Kujala
    • 1
  • Pertti Saariluoma
    • 1
  1. 1.Cognitive Science, Faculty of Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations