Advertisement

Preprocessing Information from a Data Network for the Detection of User Behavior Patterns

  • Jairo Hidalgo-GuijarroEmail author
  • Marco Yandún-Velasteguí
  • Dennys Bolaños-Tobar
  • Carlos Borja-Galeas
  • Cesar Guevara
  • José Varela-Aldás
  • David Castillo-Salazar
  • Hugo Arias-Flores
  • Washington Fierro-Saltos
  • Richard Rivera
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1026)

Abstract

This study focuses on the preprocessing of information for the selection of the most significant characteristics of a network traffic database, recovered from an Ecuadorian institution, using a method of classifying optimal entities and attributes, with the In order to achieve a complete understanding of its real composition to be able to generate patterns and identification of trends of behavior in the network, both of patterns that deviate from normal traffic behavior (intrusive), as well as normal, to detect with high precision possible attacks. Network management tools were used as a multifunctional security server software, as well as pre-processing of data tools for the selection of attributes, as well as the elimination of noise from the instances of the database, It allowed to identify which ins- tances and attributes are correct and contribute with effective information in the study. Among them we have: Greedy Stepwise Algorithm (Algoritmo Voráz), K-Means Algorithm, Discrete Chi-square Attributes and the use of computational models as Evolutionary Neural Networks and Gene Algorithms.

Keywords

Intrusion detection Server GreedyStepwise Algorithm K-Means Evolutionary neural networks Genetic algorithms 

References

  1. 1.
    Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5, 21954–21961 (2017)CrossRefGoogle Scholar
  2. 2.
    Reddy, R.R., Ramadevi, Y., Sunitha, K.V.N.: Effective discriminant function for intrusion detection using SVM. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1148–1153 (2016)Google Scholar
  3. 3.
    Modi, C.N., Acha, K.: Virtualization layer security challenges and intrusion detection/prevention systems in cloud computing: a comprehensive review. J. Supercomput. 73(3), 1192–1234 (2017)CrossRefGoogle Scholar
  4. 4.
    Farnaaz, N., Jabbar, M.: Random Forest Modeling for Network Intrusion Detection System (2016)Google Scholar
  5. 5.
    Zarkami, R., Moradi, M., Pasvisheh, R.S., Bani, A., Abbasi, K.: Input variable selection with greedy stepwise search algorithm for analysing the probability of fish occurrence: a case study for Alburnoides mossulensis in the Gamasiab River, Iran. Ecol. Eng. 118, 104–110 (2018)CrossRefGoogle Scholar
  6. 6.
    Martínez-Estudillo, F.J., Hervás-Martínez, C., Gutiérrez, P.A., Martínez-Estudillo, A.C.: Evolutionary product-unit neural networks classifiers. Neurocomputing 72(1–3), 548–561 (2008)CrossRefGoogle Scholar
  7. 7.
    Yao, X.: Evolving artificial neural networks (1999)Google Scholar
  8. 8.
    Noguera, J., Portillo, N., Hernandez, L.: Redes Neuronales, Bioinspiración para el Desarrollo de la Ingeniería. Ingeniare 17, 117 (2014)CrossRefGoogle Scholar
  9. 9.
    García Vallejo, C.A.: Selección de Instancias y Atributos en Conjuntos de Datos mediante Algoritmos sobre Grafos (2012)Google Scholar
  10. 10.
    Morring, B.D., Martinez, T.R.: A nearest neighbor data reduction algorithm (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jairo Hidalgo-Guijarro
    • 1
    Email author
  • Marco Yandún-Velasteguí
    • 1
  • Dennys Bolaños-Tobar
    • 8
  • Carlos Borja-Galeas
    • 3
    • 7
  • Cesar Guevara
    • 4
  • José Varela-Aldás
    • 2
  • David Castillo-Salazar
    • 2
    • 5
  • Hugo Arias-Flores
    • 4
  • Washington Fierro-Saltos
    • 5
    • 9
  • Richard Rivera
    • 6
  1. 1.Grupo de Investigación GISATUniversidad Politécnica Estatal del CarchiTulcánEcuador
  2. 2.SISAu Research GroupUniversidad IndoaméricaAmbatoEcuador
  3. 3.Facultad de Arquitectura, Artes y DiseñoUniversidad IndoaméricaQuitoEcuador
  4. 4.Mechatronics and Interactive Systems - MIST Research CenterUniversidad IndoaméricaQuitoEcuador
  5. 5.Facultad de InformáticaUniversidad Nacional de la PlataLa PlataArgentina
  6. 6.Escuela de Formación de TecnólogosEscuela Politécnica NacionalQuitoEcuador
  7. 7.Facultad de Diseño y ComunicaciónUniversidad de PalermoPalermoArgentina
  8. 8.Grupo de Investigación GISSUniversidad Politécnica Estatal del CarchiTulcánEcuador
  9. 9.Facultad de Ciencias de la EducaciónUniversidad Estatal de BolívarGuanujoEcuador

Personalised recommendations