Advertisement

Incorporating Artificial Intelligence into Medical Cyber Physical Systems: A Survey

  • Omid Rajabi Shishvan
  • Daphney-Stavroula Zois
  • Tolga SoyataEmail author
Chapter

Abstract

Medical Cyber Physical Systems (MCPSs) prescribe a platform in which patient health information is acquired by the emerging Internet of Things (IoT) sensors, pre-processed locally, and processed via advanced machine intelligence algorithms in the cloud. The emergence of MCPSs holds the promise to revolutionize remote patient healthcare monitoring, accelerate the development of new drugs or treatments, and improve the quality-of-life for patients who are suffering from various medical conditions among other various applications. The amount of raw medical data gathered through the IoT sensors in an MCPS provides a rich platform that artificial intelligence algorithms can use to provide decision support for either medical experts or patients. In this paper, we provide an overview of MCPSs and the data flow through these systems. This includes how raw physiological signals are converted into features and are used by machine intelligence algorithms, the types of algorithms available for the healthcare domain, how the data and the decision support output are presented to the end user, and how all of these steps are completed in a secure fashion to preserve the privacy of the users.

Keywords

IoT Cloud computing Sensors Physiological signals Machine learning Cyber-physical systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M.K. Aktas, G. Mateos, B. Kantarci, S. Andreescu, Health monitoring and management using Internet-of-Things (IoT) sensing with cloud-based processing: opportunities and challenges, in 2015 IEEE International Conference on Services Computing (SCC), New York (June 2015), pp. 285–292Google Scholar
  2. 2.
    X. Chen, Z. Zhu, M. Chen, Y. Li, Large-scale mobile fitness app usage analysis for smart health. IEEE Commun. Mag. 56(4), 46–52 (2018)CrossRefGoogle Scholar
  3. 3.
    P. Wu, M.Y. Nam, J. Choi, A. Kirlik, L. Sha, R.B. Berlin, Supporting emergency medical care teams with an integrated status display providing real-time access to medical best practices, workflow tracking, and patient data. J. Med. Syst. 41(12), 186 (2017)Google Scholar
  4. 4.
    J. Jezewski, A. Pawlak, K. Horoba, J. Wrobel, R. Czabanski, M. Jezewski, Selected design issues of the medical cyber-physical system for telemonitoring pregnancy at home. Microprocess. Microsyst. 46, 35–43 (2016)CrossRefGoogle Scholar
  5. 5.
    G. Honan, A. Page, O. Kocabas, T. Soyata, B. Kantarci, Internet-of-everything oriented implementation of secure Digital Health (D-Health) systems, in Proceedings of the 2016 IEEE Symposium on Computers and Communications (ISCC), Messina (Jun 2016), pp. 718–725Google Scholar
  6. 6.
    A. Page, S. Hijazi, D. Askan, B. Kantarci, T. Soyata, Research directions in cloud-based decision support systems for health monitoring using Internet-of-Things driven data acquisition. Int. J. Serv. Comput. 4(4), 18–34 (2016)Google Scholar
  7. 7.
    104th Congress Public Law 191, Health Insurance Portability and Accountability Act of 1996 (1996). https://www.gpo.gov/fdsys/pkg/PLAW-104publ191/html/PLAW-104publ191.htm. Accessed 28 July 2017
  8. 8.
    O. Kocabas, T. Soyata, M.K. Aktas, Emerging security mechanisms for medical cyber physical systems. IEEE/ACM Trans. Comput. Biol. Bioinform. 13(3), 401–416 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Yang, L. Xie, M. Mäntysalo, X. Zhou, Z. Pang, L. Da Xu, S. Kao-Walter, Q. Chen, L.R. Zheng, A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans. Ind. Inf. 10(4), 2180–2191 (2014)CrossRefGoogle Scholar
  10. 10.
    D.M. West, How 5G technology enables the health internet of things. Brookings Center for Technology Innovation 3, 1–20 (2016)Google Scholar
  11. 11.
    A. Mdhaffar, T. Chaari, K. Larbi, M. Jmaiel, B. Freisleben, IoT-based health monitoring via lorawan, in IEEE EUROCON 2017-17th International Conference on Smart Technologies (IEEE, Piscataway, 2017), pp. 519–524Google Scholar
  12. 12.
    A. Page, T. Soyata, J. Couderc, M. Aktas, B. Kantarci, S. Andreescu, Visualization of health monitoring data acquired from distributed sensors for multiple patients, in IEEE Global Telecommunications Conference (GLOBECOM), San Diego (Dec 2015), pp. 1–7Google Scholar
  13. 13.
    S. Aust, R.V. Prasad, I.G. Niemegeers, IEEE 802.11ah: advantages in standards and further challenges for sub 1 GHz Wi-Fi, in 2012 IEEE International Conference on Communications (ICC) (IEEE, Piscataway, 2012), pp. 6885–6889Google Scholar
  14. 14.
    S. Han, Y.H. Wei, A.K. Mok, D. Chen, M. Nixon, E. Rotvold, Building wireless embedded internet for industrial automation, in IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (IEEE, Piscataway, 2013), pp. 5582–5587Google Scholar
  15. 15.
    G. Mokhtari, Q. Zhang, G. Nourbakhsh, S. Ball, M. Karunanithi, Bluesound: a new resident identification sensor—using ultrasound array and BLE technology for smart home platform. IEEE Sens. J. 17(5), 1503–1512 (2017)CrossRefGoogle Scholar
  16. 16.
    W.L. Chen, L.B. Chen, W.J. Chang, J.J. Tang, An IoT-based elderly behavioral difference warning system, in 2018 IEEE International Conference on Applied System Invention (ICASI) (IEEE, Piscataway, 2018), pp. 308–309CrossRefGoogle Scholar
  17. 17.
    Y. Li, Z. Chi, X. Liu, T. Zhu, Passive-ZigBee: enabling ZigBee communication in IoT networks with 1000x+ less power consumption, in Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems (ACM, New York, 2018), pp. 159–171Google Scholar
  18. 18.
    A.M. Rahmani, T.N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang, P. Liljeberg, Exploiting smart e-health gateways at the edge of healthcare Internet-of-Things: a fog computing approach. Futur. Gener. Comput. Syst. 78, 641–658 (2018)CrossRefGoogle Scholar
  19. 19.
    M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, A.K. Jain, Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4(2), 164–171 (2000)CrossRefGoogle Scholar
  20. 20.
    Y. Chen, M. Yang, X. Chen, B. Liu, H. Wang, S. Wang, Sensorineural hearing loss detection via discrete wavelet transform and principal component analysis combined with generalized eigenvalue proximal support vector machine and Tikhonov regularization. Multimed. Tools Appl. 77(3), 3775–3793 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Ghandeharioun, S. Fedor, L. Sangermano, D. Ionescu, J. Alpert, C. Dale, D. Sontag, R. Picard, Objective assessment of depressive symptoms with machine learning and wearable sensors data, in Proceedings of the International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio (2017)Google Scholar
  22. 22.
    Y. Kim, N. Kaongoen, S. Jo, Hybrid-BCI smart glasses for controlling electrical devices, in 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) (IEEE, Piscataway, 2015), pp. 1162–1166Google Scholar
  23. 23.
    C. Li, W.K. Cheung, J. Liu, J.K. Ng, Bayesian nominal matrix factorization for mining daily activity patterns, in 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI) (IEEE, Piscataway, 2016), pp. 335–342Google Scholar
  24. 24.
    G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Y. Kim, H. Lee, E.M. Provost, Deep learning for robust feature generation in audiovisual emotion recognition, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, Piscataway, 2013), pp. 3687–3691Google Scholar
  26. 26.
    B., Jokanović, M. Amin, Fall detection using deep learning in range-Doppler radars. IEEE Trans. Aerosp. Electron. Syst. 54(1), 180–189 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Li, V. Rozgic, G. Thatte, S. Lee, A. Emken, M. Annavaram, U. Mitra, D. Spruijt-Metz, S. Narayanan, Multimodal physical activity recognition by fusing temporal and cepstral information. IEEE Trans. Neural Syst. Rehabil. Eng. 18(4), 369–380 (Aug 2010)CrossRefGoogle Scholar
  28. 28.
    A. Sano, R.W. Picard, Stress recognition using wearable sensors and mobile phones, in IEEE Humane Association Conference on Affective Computing and Intelligent Interaction (ACII) (2013), pp. 671–676Google Scholar
  29. 29.
    B. Xie, H. Minn, Real-time sleep apnea detection by classifier combination. IEEE Trans. Inf. Technol. Biomed. 16(3), 469–477 (2012)CrossRefGoogle Scholar
  30. 30.
    V. Srinivasan, C. Eswaran, N. Sriraam, Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005)CrossRefGoogle Scholar
  31. 31.
    B. Lei, S.A. Rahman, I. Song, Content-based classification of breath sound with enhanced features. Neurocomputing 141, 139–147 (2014)CrossRefGoogle Scholar
  32. 32.
    D. Sow, A. Biem, M. Blount, M. Ebling, O. Verscheure, Body sensor data processing using stream computing, in Proceedings of the International Conference on Multimedia Information Retrieval (ACM, New York, 2010), pp. 449–458Google Scholar
  33. 33.
    S. Souli, Z. Lachiri, Audio sounds classification using scattering features and support vectors machines for medical surveillance. Appl. Acoust. 130, 270–282 (2018)CrossRefGoogle Scholar
  34. 34.
    A. Page, T. Soyata, J. Couderc, M.K. Aktas, An open source ECG clock generator for visualization of long-term cardiac monitoring data. IEEE Access 3, 2704–2714 (2015)CrossRefGoogle Scholar
  35. 35.
    C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) (Springer, New York, 2006)zbMATHGoogle Scholar
  36. 36.
    D. Sánchez-Morillo, M. López-Gordo, A. León, Novel multiclass classification for home-based diagnosis of sleep apnea hypopnea syndrome. Expert Syst. Appl. 41(4), 1654–1662 (2014)CrossRefGoogle Scholar
  37. 37.
    D.S. Lee, T.W. Chong, B.G. Lee, Stress events detection of driver by wearable glove system. IEEE Sens. J. 17(1), 194–204 (2017)MathSciNetGoogle Scholar
  38. 38.
    W.H. Wang, Y.L. Hsu, P.C. Chung, M.C. Pai, Predictive models for evaluating cognitive ability in dementia diagnosis applications based on inertia-and gait-related parameters. IEEE Sens. J. 18(8), 3338–3350 (2018)CrossRefGoogle Scholar
  39. 39.
    M. Mursalin, Y. Zhang, Y. Chen, N.V. Chawla, Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing 241, 204–214 (2017)CrossRefGoogle Scholar
  40. 40.
    B. Nakisa, M.N. Rastgoo, D. Tjondronegoro, V. Chandran, Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2017)CrossRefGoogle Scholar
  41. 41.
    H. Li, D. Yuan, X. Ma, D. Cui, L. Cao, Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 7, 41011 (2017)CrossRefGoogle Scholar
  42. 42.
    V. Chandola, S.R. Sukumar, J.C. Schryver, Knowledge discovery from massive healthcare claims data, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2013), pp. 1312–1320Google Scholar
  43. 43.
    B.M. Marlin, D.C. Kale, R.G. Khemani, R.C. Wetzel, Unsupervised pattern discovery in electronic health care data using probabilistic clustering models, in Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (ACM, New York, 2012), pp. 389–398Google Scholar
  44. 44.
    D.P. Chen, S.C. Weber, P.S. Constantinou, T.A. Ferris, H.J. Lowe, A.J. Butte, Clinical arrays of laboratory measures, or “clinarrays”, built from an electronic health record enable disease subtyping by severity, in AMIA (2007)Google Scholar
  45. 45.
    D. Sanchez-Morillo, M.A. Fernandez-Granero, A.L. Jiménez, Detecting COPD exacerbations early using daily telemonitoring of symptoms and k-means clustering: a pilot study. Med. Biol. Eng. Comput. 53(5), 441–451 (2015)CrossRefGoogle Scholar
  46. 46.
    N.P. Tatonetti, J.C. Denny, S.N. Murphy, G.H. Fernald, G. Krishnan, V. Castro, P. Yue, P.S. Tsau, I. Kohane, D.M. Roden, et al., Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels. Clin. Pharmacol. Ther. 90(1), 133 (2011)CrossRefGoogle Scholar
  47. 47.
    B. Ustun, M.B. Westover, C. Rudin, M.T. Bianchi, Clinical prediction models for sleep apnea: the importance of medical history over symptoms. J. Clin. Sleep Med. Off. Publ. Am. Acad. Sleep Med. 12(2), 161–168 (2016)CrossRefGoogle Scholar
  48. 48.
    S. Hijazi, A. Page, B. Kantarci, T. Soyata, Machine learning in cardiac health monitoring and decision support. IEEE Comput. Mag. 49(11), 38–48 (2016)CrossRefGoogle Scholar
  49. 49.
    A. Page, M.K. Aktas, T. Soyata, W. Zareba, J. Couderc, “QT Clock” to improve detection of QT prolongation in long QT syndrome patients. Heart Rhythm 13(1), 190–198 (2016)CrossRefGoogle Scholar
  50. 50.
    H.S. Mousavi, V. Monga, G. Rao, A.U.K. Rao, et al., Automated discrimination of lower and higher grade gliomas based on histopathological image analysis. J. Pathol. Inform. 6(1), 15 (2015)CrossRefGoogle Scholar
  51. 51.
    E. Ataer-Cansizoglu, V. Bolon-Canedo, J.P. Campbell, A. Bozkurt, D. Erdogmus, J. Kalpathy-Cramer, S. Patel, K. Jonas, R.V.P. Chan, S. Ostmo, et al., Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the “i-ROP” system and image features associated with expert diagnosis. Transl. Vis. Sci. Technol. 4(6), 5–5 (2015)CrossRefGoogle Scholar
  52. 52.
    I. Bisio, F. Lavagetto, M. Marchese, A. Sciarrone, A smartphone-centric platform for remote health monitoring of heart failure. Int. J. Commun. Syst. 28(11), 1753–1771 (2015)CrossRefGoogle Scholar
  53. 53.
    M. Bsoul, H. Minn, L. Tamil, Apnea MedAssist: real-time sleep apnea monitor using single-lead ECG. IEEE Trans. Inf. Technol. Biomed. 15(3), 416–427 (2011)CrossRefGoogle Scholar
  54. 54.
    D. Zhou, J. Luo, V.M.B. Silenzio, Y. Zhou, J. Hu, G. Currier, H.A. Kautz, Tackling mental health by integrating unobtrusive multimodal sensing, in AAAI, 1401–1409 (2015)Google Scholar
  55. 55.
    D.C. Cireşan, A. Giusti, L.M. Gambardella, J. Schmidhuber, Mitosis detection in breast cancer histology images with deep neural networks, in International Conference on Medical Image Computing and Computer-assisted Intervention (Springer, Berlin, 2013), pp. 411–418Google Scholar
  56. 56.
    H. Chen, X. Qi, L. Yu, P.A. Heng, DCAN: deep contour-aware networks for accurate gland segmentation (2016). Preprint arXiv:1604.02677Google Scholar
  57. 57.
    V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, et al., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)CrossRefGoogle Scholar
  58. 58.
    S. Kiranyaz, T. Ince, M. Gabbouj, Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2016)CrossRefGoogle Scholar
  59. 59.
    H.C. Shin, K. Roberts, L. Lu, D. Demner-Fushman, J. Yao, R.M. Summers, Learning to read chest X-rays: recurrent neural cascade model for automated image annotation (2016). Preprint arXiv:1603.08486Google Scholar
  60. 60.
    Q. Li, R.G. Mark, G.D. Clifford, Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol. Meas. 29(1), 15 (2007)CrossRefGoogle Scholar
  61. 61.
    R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)MathSciNetCrossRefGoogle Scholar
  62. 62.
    R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. J. Basic Eng. 83(1), 95–108 (1961)MathSciNetCrossRefGoogle Scholar
  63. 63.
    P. Schulam, S. Saria, A framework for individualizing predictions of disease trajectories by exploiting multi-resolution structure, in Advances in Neural Information Processing Systems (2015), pp. 748–756Google Scholar
  64. 64.
    H. Neuvirth, M. Ozery-Flato, J. Hu, J. Laserson, M.S. Kohn, S. Ebadollahi, M. Rosen-Zvi, Toward personalized care management of patients at risk: the diabetes case study, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2011), pp. 395–403Google Scholar
  65. 65.
    J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, V. Svetnik, Deep neural nets as a method for quantitative structure–activity relationships. J. Chem. Inf. Model. 55(2), 263–274 (2015)CrossRefGoogle Scholar
  66. 66.
    Y. Gordienko, S. Stirenko, Y. Kochura, O. Alienin, M. Novotarskiy, N. Gordienko, Deep learning for fatigue estimation on the basis of multimodal human-machine interactions (2017). Preprint arXiv:1801.06048Google Scholar
  67. 67.
    D.S. Zois, M. Levorato, U. Mitra, Energy-efficient, heterogeneous sensor selection for physical activity detection in wireless body area networks. IEEE Trans. Signal Process. 61(7), 1581–1594 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    U. Mitra, B.A. Emken, S. Lee, M. Li, V. Rozgic, G. Thatte, H. Vathsangam, D.S. Zois, M. Annavaram, S. Narayanan, M. Levorato, D. Spruijt-Metz, G. Sukhatme, KNOWME: a case study in wireless body area sensor network design. IEEE Commun. Mag. 50(5), 116–125 (2012)CrossRefGoogle Scholar
  69. 69.
    J. Hoey, C. Boutilier, P. Poupart, P. Olivier, A. Monk, A. Mihailidis, People, sensors, decisions: customizable and adaptive technologies for assistance in healthcare. ACM Trans. Interactive Intell. Syst. 2(4), 1–36 (2012)CrossRefGoogle Scholar
  70. 70.
    P. Paredes, R. Gilad-Bachrach, M. Czerwinski, A. Roseway, K. Rowan, J. Hernandez, PopTherapy: coping with stress through pop-culture, in Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2014), pp. 109–117Google Scholar
  71. 71.
    M. Rabbi, M.H. Aung, T. Choudhury, Towards health recommendation systems: an approach for providing automated personalized health feedback from mobile data, in Mobile Health (Springer, Berlin, 2017), pp. 519–542Google Scholar
  72. 72.
    I. Sundin, T. Peltola, M.M. Majumder, P. Daee, M. Soare, H. Afrabandpey, C. Heckman, S. Kaski, P. Marttinen, Improving drug sensitivity predictions in precision medicine through active expert knowledge elicitation (2017). Preprint arXiv:1705.03290Google Scholar
  73. 73.
    D. Chou, Health it and patient safety: building safer systems for better care. JAMA 308(21), 2282–2282 (2012)CrossRefGoogle Scholar
  74. 74.
    A.A. Bui, W. Hsu, Medical data visualization: toward integrated clinical workstations, in Medical Imaging Informatics (Springer, Berlin, 2010), pp. 139–193Google Scholar
  75. 75.
    F. Jager, A. Taddei, G.B. Moody, M. Emdin, G. Antolič, R. Dorn, A. Smrdel, C. Marchesi, R.G. Mark, Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med. Biol. Eng. Comput. 41(2), 172–182 (2003)CrossRefGoogle Scholar
  76. 76.
    A. Golberger, L. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R. Mark, J. Mietus, G. Moody, P. Chung-Kan, H. Stenley, Physiobank, physiotoolkit, and physionet: component of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)Google Scholar
  77. 77.
    K. Xu, S. Guo, N. Cao, D. Gotz, A. Xu, H. Qu, Z. Yao, Y. Chen, ECGLens: interactive visual exploration of large scale ECG data for arrhythmia detection, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18) (ACM, New York, 2018), Paper 663, 12 pp. https://doi.org/10.1145/3173574.3174237
  78. 78.
    C.A. Christmann, G. Zolynski, A. Hoffmann, G. Bleser, Effective visualization of long term health data to support behavior change, in Digital Human Modeling. Applications in Health, Safety, Ergonomics, and Risk Management: Health and Safety. DHM 2017, ed. by V. Duffy. Lecture Notes in Computer Science, vol. 10287 (Springer, Cham, 2017)CrossRefGoogle Scholar
  79. 79.
    C.A. Christmann, G. Zolynski, A. Hoffmann, G. Bleser, Effective visualization of long term health data to support behavior change, in International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (Springer, Berlin, 2017), pp. 237–247Google Scholar
  80. 80.
    A. Cuttone, M.K. Petersen, J.E. Larsen, Four data visualization heuristics to facilitate reflection in personal informatics, in International Conference on Universal Access in Human-Computer Interaction (Springer, Berlin, 2014), pp. 541–552Google Scholar
  81. 81.
    S. Theis, P. Rasche, C. Bröhl, M. Wille, A. Mertens, User-driven semantic classification for the analysis of abstract health and visualization tasks, in International Conference on Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management (Springer, Berlin, 2017), pp. 297–305Google Scholar
  82. 82.
    K. Tollmar, F. Bentley, C. Viedma, Mobile health mashups: making sense of multiple streams of wellbeing and contextual data for presentation on a mobile device, in 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (IEEE, Piscataway, 2012), pp. 65–72Google Scholar
  83. 83.
    S. Stusak, A. Tabard, F. Sauka, R.A. Khot, A. Butz, Activity sculptures: exploring the impact of physical visualizations on running activity. IEEE Trans. Vis. Comput. Graph. 20(12), 2201–2210 (2014)CrossRefGoogle Scholar
  84. 84.
    C. Fan, J. Forlizzi, A.K. Dey, A spark of activity: exploring informative art as visualization for physical activity, in Proceedings of the 2012 ACM Conference on Ubiquitous Computing (ACM, New York, 2012), pp. 81–84Google Scholar
  85. 85.
    R.A. Khot, D. Aggarwal, R. Pennings, L. Hjorth, F. Mueller, Edipulse: investigating a playful approach to self-monitoring through 3D printed chocolate treats, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (ACM, New York, 2017), pp. 6593–6607Google Scholar
  86. 86.
    F. Jonathan, J. Sonin, hGraph: an open system for visualizing personal health metrics. Involution Studios, Arlington, Tech. Rep. (April 2012)Google Scholar
  87. 87.
    A. Ledesma, M. Al-Musawi, H. Nieminen, Health figures: an open source javascript library for health data visualization. BMC Med. Inform. Decis. Mak. 16(1), 38 (2016)Google Scholar
  88. 88.
    D. Estrin, I. Sim, Open mHealth architecture: an engine for health care innovation. Science 330(6005), 759–760 (2010)CrossRefGoogle Scholar
  89. 89.
    A.A. Bui, D.R. Aberle, H. Kangarloo, Timeline: visualizing integrated patient records. IEEE Trans. Inf. Technol. Biomed. 11(4), 462–473 (2007)CrossRefGoogle Scholar
  90. 90.
    J. Plourde, D. Arney, J.M. Goldman, OpenICE: an open, interoperable platform for medical cyber-physical systems, in 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (IEEE, Piscataway, 2014), pp. 221–221Google Scholar
  91. 91.
    R. Kamaleswaran, C. Collins, A. James, C. McGregor, PhysioEx: visual analysis of physiological event streams, in Computer Graphics Forum, vol. 35 (Wiley Online Library, 2016), pp. 331–340Google Scholar
  92. 92.
    B. Maradani, H. Levkowitz, The role of visualization in tele-rehabilitation: a case study, in 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence (IEEE, Piscataway, 2017), pp. 643–648Google Scholar
  93. 93.
    S.H. Koch, C. Weir, D. Westenskow, M. Gondan, J. Agutter, M. Haar, D. Liu, M. Görges, N. Staggers, Evaluation of the effect of information integration in displays for ICU nurses on situation awareness and task completion time: a prospective randomized controlled study. Int. J. Med. Inform. 82(8), 665–675 (2013)CrossRefGoogle Scholar
  94. 94.
    H. Almohri, L. Cheng, D. Yao, H. Alemzadeh, On threat modeling and mitigation of medical cyber-physical systems, in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (IEEE, Piscataway, 2017), pp. 114–119Google Scholar
  95. 95.
    G. Grispos, W.B. Glisson, K.K.R. Choo, Medical cyber-physical systems development: a forensics-driven approach, in 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) (IEEE, Piscataway, 2017), pp. 108–113Google Scholar
  96. 96.
    N. Mowla, I. Doh, K. Chae, Evolving neural network intrusion detection system for MCPS, in 2017 19th International Conference on Advanced Communication Technology (ICACT) (IEEE, Piscataway, 2017), pp. 183–187Google Scholar
  97. 97.
    A. Boddy, W. Hurst, M. Mackay, A. El Rhalibi, A study into data analysis and visualisation to increase the cyber-resilience of healthcare infrastructures, in Proceedings of the 1st International Conference on Internet of Things and Machine Learning (IML ’17) (ACM, New York, 2017), Article 32, 7 pp. https://doi.org/10.1145/3109761.3109793

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Omid Rajabi Shishvan
    • 1
  • Daphney-Stavroula Zois
    • 1
  • Tolga Soyata
    • 1
    Email author
  1. 1.University at AlbanySUNYAlbanyUSA

Personalised recommendations