Advertisement

Exact Solutions of the Nonlinear Spinor Equations

  • Vladimir A. Zhelnorovich
Chapter

Abstract

The physical space-time in general relativity is the four-dimensional pseudo-Riemannian space V4 with the metric signature (+, +, +, −). We assume that the space V4 referred to a coordinate system with the covariant vector basis Open image in new window and variables xi, i = 1, 2, 3, 4.

References

  1. 3.
    Bagrov, V.G., Istomin, A.D., Obukhov, V.V.: Cosmological solutions of Einstein–Dirac equations. Gravit. Cosmol. 2, 117–121 (1996)ADSzbMATHGoogle Scholar
  2. 17.
    Dürr, H., Heisenberg, W., Mitter, H., Schlieder, S., Yamazaki K.: Zur Theorie der Elementarteilchen. Zeitschrift für Naturforschung. A14, 441–485 (1959)ADSMathSciNetzbMATHGoogle Scholar
  3. 29.
    Golubiatnikov, A.N.: Tensor and spinor invariants of subgroups of the Lorentz group and construction of exact soltions of the Einstein–Dirac equations. Ph.D. thesis, Moscow state University (1970) (in Russian)Google Scholar
  4. 40.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, London; Addison-Wesley Pub. Co., Reading, MA (1987)CrossRefGoogle Scholar
  5. 51.
    Platania, G.: Rosania, R.: Exact Bianci type-1 solutions of the Einstein equations with Dirac field. Europhys. Lett. 37, 585–590 (1997)ADSMathSciNetCrossRefGoogle Scholar
  6. 52.
    Radford, C.J., Klotz, A.N.: An exact solution of the Dirac–Einstein equations. J. Phys. A: Math. Gen. 16, 317–320 (1983)ADSCrossRefGoogle Scholar
  7. 59.
    Rybakov, Y.P., Saha, B., Shikin, G.N.: Nonlinear spinor fields in Bianchi-I-type space: exact self-consistent solutions. Izvestia VUZov Phys. 37, 40–45 (1994) (in Russian)Google Scholar
  8. 79.
    Zhelnorovich, V.A.: Exact one-dimensional nonstationary solutions of the Heysenberg equations. Dokl. Math. 17, 124–127 (1976). Maik Nauka/Interperiodica Publishing (Russian Federation)Google Scholar
  9. 82.
    Zhelnorovich, V.A.: Theory of Spinors and Its Application in Physics and Mechanics. Moscow, Nauka (1982) (in Russian)zbMATHGoogle Scholar
  10. 83.
    Zhelnorovich, V.A.: Hydrodynamic interpretation of nonlinear relativistic theories of elementary particles. Sov. Phys. Dokl. 28, 338–341 (1983)ADSMathSciNetGoogle Scholar
  11. 85.
    Zhelnorovich, V.A.: Invariant description of fermionic fields by scalar and vector fields. Sov. Phys. Dokl. 32, 272–274 (1987)ADSMathSciNetGoogle Scholar
  12. 86.
    Zhelnorovich, V.A.: Dirac equations in the general theory of relativity. Sov. Phys. Dokl. 32, 726–728 (1987)ADSMathSciNetGoogle Scholar
  13. 91.
    Zhelnorovich, V.A.: An exact general solution of the Einstein-Dirac equations in homogeneous spaces. Dokl. Math. 53, 87–91 (1996)zbMATHGoogle Scholar
  14. 92.
    Zhelnorovich, V.A.: Cosmological solutions of Einstein–Dirac equations. Gravit. Cosmol. 2, 109–116 (1996)ADSzbMATHGoogle Scholar
  15. 94.
    Zhelnorovich, V.A.: Some exact solutions of the Einstein-Dirac equations with the cosmological constant. Gravit. Cosmol. 6, 1–10 (2000)MathSciNetGoogle Scholar
  16. 95.
    Zhelnorovich, V.A.: A general exact solution of the Einstein-Dirac equations with the cosmological term in homogeneous space. J. Exp. Theor. Phys. 98, 619–628 (2004). Maik Nauka/Interperiodica Publishing (Russian Federation)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir A. Zhelnorovich
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations