Advertisement

Spinor Fields in a Riemannian Space

  • Vladimir A. Zhelnorovich
Chapter

Abstract

Let us recall the basic elementary data concerning Riemannian spaces. The material to be presented in this section is of auxiliary nature, and proofs of the relations appearing here can be found in known textbooks on Riemannian geometry.

References

  1. 4.
    Belinfante, F.: On the covariant derivative of tensor-undors. Phys. 7, 305–324 (1940)ADSMathSciNetzbMATHGoogle Scholar
  2. 16.
    Dubrovin, B., Fomenko, A., Novikov S.: Modern geometry- methods and applications, vol. 1–3. Springer, New York (1985)–(1995)Google Scholar
  3. 20.
    Fock, V.: Dirac wave equation and Riemann geometry. J. Phys. Radium. 10, 392–405 (1929)CrossRefGoogle Scholar
  4. 24.
    Fock V., Iwanenko D.: Géometrie quantique linéaire et déplacement paralléle. Compt. Rend. Acad Sci. Paris. 188, 1470–1472 (1929)zbMATHGoogle Scholar
  5. 55.
    Rashevskii, P.K.: Riemannian Geometry and Tensor Analysis. Nauka, Moscow (1967) (in Russian)Google Scholar
  6. 60.
    Schouten, J.A., Struik, D.J.: Einfuhrung in die Neueren Methoden der Differentialgeometrie. Bd. 1, 2. Noordhoff, Groningen (1938)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir A. Zhelnorovich
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations