The Impact of Climatic Conditions on PV/PVT Outcomes

  • Ali H. A. Al-Waeli
  • Hussein A. Kazem
  • Miqdam Tariq Chaichan
  • Kamaruzzaman Sopian


The dynamic behavior of photovoltaics is attributed to their dependence on solar irradiance levels and their material characteristics which makes them highly affected by temperature gain or loss. This chapter discusses the different climatic conditions that affect PV and PV/T systems such as solar irradiance, ambient temperature, wind speed, humidity, and dust. Each parameter is explained in terms of concept, type, and level of impact on PV/T. The impact is measured through observing changes in the electrical and thermal parameters of PV/T collectors such as power, electrical efficiency, thermal efficiency, and overall PV/T efficiency. Assessing PV/T collector behavior with respect to the environment around it intelligently deals with each issue to maximize the output of PV/T systems and choose suitable locations for installation. In addition, accurate assessment of the technology’s reliability can be made with knowledge of various parameters affecting its performance.


Operating conditions Solar irradiance Ambient temperature Dust accumulation Relative humidity 


  1. 1.
    J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (Wiley, New York, 1991)Google Scholar
  2. 2.
    C. Fröhlich, History of solar radiometry and the world radiation reference. Metrologia 28, 111–115 (1991)CrossRefGoogle Scholar
  3. 3.
    H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, A. Sharifi, A review of principle and sun-tracking methods for maximizing solar systems output. Renew. Sustain. Energy Rev. 13, 1800–1818 (2009)CrossRefGoogle Scholar
  4. 4.
    W.C. Dickinson, P.N. Cheremisinoff, Solar Energy Technology Handbook (Butterworths, London, 1980)Google Scholar
  5. 5.
    L. Kumar, A.K. Skidmore, E. Knoles, Modeling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 11(5), 475–497 (1997)CrossRefGoogle Scholar
  6. 6.
    A. Sayigh, Practical Photovoltaic for Sustainable Electricity and Buildings, 1st edn. (Springer, Basel, 2017)., ISBN10 3319392786, ISBN13 9783319392783CrossRefGoogle Scholar
  7. 7.
    International energy agency (
  8. 8.
    Earth radiation Budgest earth Radeation budget ( NASA langlely research center (2006-10-17) Retrieved on 2006-10-17
  9. 9.
    C.H. Duncan, R.C. Willson, J.M. Kendall, R.G. Harrison, J.R. Hickey, Latest rocket measurements of the solar constant. Sol. Energy 28, 385–390 (1982)CrossRefGoogle Scholar
  10. 10.
    K.Y. Kondratyev, Radiative Heat Exchange in the Atmosphere (Pergamon Press, New York, 1965)Google Scholar
  11. 11.
    L.D. Williams, R.G. Barry, J.T. Andrews, Application of computed global radiation for areas of high relief. J. Appl. Meteorol. 11, 526–533 (1972)CrossRefGoogle Scholar
  12. 12.
    T. Khatib, A. Mohamed, M. Mahmoud, K. Sopian, Estimating global solar energy using multilayer perception artificial neural network. Int. J. Energy 6(1), 25 (2012)Google Scholar
  13. 13.
    R.M. El-Shazly, Feasibility of concentrated solar power under Egyptian conditions, MSc Thesis, University of Kassel, Cairo University (Egypt) (2011)Google Scholar
  14. 14.
    M.T. Chaichan, K.H. Abaas, H.A. Kazem, F. Hasoon, H.S. Aljibori, A. Ali, K. Alwaeli, F.S. Raheem, A.H. Alwaeli, Effect of design variation on saved energy of concentrating solar power prototype, Proceedings of the World Congress on Engineering, WCE III 2012, London, U.K. (2012)Google Scholar
  15. 15.
    Asia/Pacific PV Markets 2010 (
  16. 16.
    S. Duryea, S. Islam, W. Lawrance, A battery management system for stand-alone photovoltaic energy systems. IEEE Ind. Appl. Soc 7(3), 67–72 (2001)CrossRefGoogle Scholar
  17. 17.
    W. Durisch, H. Kiess, Crystalline silicon cells and technology, third generation concepts for photovoltaic conference, Osaka, Japan, May 12–16 2003Google Scholar
  18. 18.
    A. Chouder, S. Silvestre, N. Sadaoui, L. Rahmani, Simulation of a grid connected PV system based on the evaluation of main PV. Simul. Model. Pract. Theory 20(1), 46–58 (2012)CrossRefGoogle Scholar
  19. 19.
    K. Thongpao, P. Sripadungtham, P. Raphisak, K. Sriprapha, O. Ekkachart, Solar cells based on the influence of irradiance and module temperature, in Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), International Conference, (Chiang Mai, Thailand, 2010), pp. 153–160Google Scholar
  20. 20.
    F.W. Burari, A.S. Sambo, Model for the prediction of global solar radiation for Bauchi using meteorological data, Nigeria. J. Renew. Energy 91, 30–33 (2001)Google Scholar
  21. 21.
    A.M. Al-Salihi, M.M. Kadum, A.G. Mohammed, Estimation of global solar radiation on horizontal surface using meteorological measurement for different cities in Iraq. Asian J. Sci. Res 3(4), 240–248 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Kalogirou, Solar Energy Engineering: Process and Systems (Academic Press, London, 2009)Google Scholar
  23. 23.
    J. Jarras, Feasibility of a Fund for Financing Solar Water Heaters and Projects Related to the Promotion of Renewable Energies in Jordan (MEMR Press, Amman, 1987)Google Scholar
  24. 24.
    D.H.W. Li, J.C. Lam, An analysis of climatic variables and design implications. Archit. Sci. Rev. 42(1), 15–25 (1999)CrossRefGoogle Scholar
  25. 25.
    T. Muneer, Solar radiation model for Europe. Build. Serv. Eng. Res. Technol. 11(4), 153–163 (1990)CrossRefGoogle Scholar
  26. 26.
    D.H.W. Li, J.C. Lam, Predicting solar irradiance on inclined surfaces using sky radiance data. Energ. Conver. Manage. 45(11–12), 1771–1783 (2004)CrossRefGoogle Scholar
  27. 27.
    E. Vartiainen, A new approach to estimating the diffuse irradiance on inclined surfaces. Renew. Energy 20(1), 45–64 (2000)CrossRefGoogle Scholar
  28. 28.
    G. Schaab, Modeling and visualization of the spatial and temporal variability of the irradiance by means of a geo-information system, Cartographic building blocks, Dresden, p. 160. (2000)Google Scholar
  29. 29.
    A. Al-Salaymeh, Modeling of global daily solar radiation on horizontal surfaces for Amman city. Emirates J. Eng. Res 11(1), 49–56 (2006)Google Scholar
  30. 30.
    T. Khatib, A. Mohamed, K. Sopian, A review of solar energy modeling techniques. Renew. Sustain. Energy Rev. 16, 2864–2869 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Kreider, F. Kreith, Solar Energy Handbook (McGraw-Hill, New York, 1981)CrossRefGoogle Scholar
  32. 32.
    D.I. Wardle, D.C. McKay, Recent advances in pyranometry, in Proceedings of International Energy Agency, Task IX, Solar Radiation and Pyranometer Studies, (Norrkoping, Sweden), p. 984Google Scholar
  33. 33.
    G.A. Zerlaut, Solar radiometry instrumentation, calibration techniques, and standards. Sol. Cells 18, 189–203 (1986)CrossRefGoogle Scholar
  34. 34.
    B.C. Bush, Characterization of thermal effects in pyranometers: A data correction algorithm for improved measurement of surface insolation. J. Atmos. Oceanic Tech. 17, 165–175 (2000)CrossRefGoogle Scholar
  35. 35.
    E.G. Dutton et al., Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J. Atmos. Oceanic Tech. 18, 297–314 (2001)CrossRefGoogle Scholar
  36. 36.
    S. Wilcox, Improving global solar radiation measurements using zenith angle dependent calibration factors, in Proceedings Forum 2001 Solar Energy: The Power to Choose, (American Solar Energy Society, Washington, DC, 2001)Google Scholar
  37. 37.
    J. Michalsky, Optimal measurement of surface shortwave irradiance using current instrumentation. J. Atmos. Oceanic Tech. 16, 55–69 (1999)CrossRefGoogle Scholar
  38. 38.
    J.J. Michalsky, Toward the development of a diffuse horizontal shortwave irradiance working standard. J. Geophys. Res. (2005).
  39. 39.
    I. Reda, Using a blackbody to calculate net-longwave responsively of shortwave solar pyranometers to correct, for their thermal offset error during outdoor calibration using the component sum method. J. Atmos. Oceanic Tech. 22, 1531–1540 (2005)CrossRefGoogle Scholar
  40. 40.
    C.A. Gueymard, D.R. Myers, Solar radiation measurement: Progress in radiometry for improved modeling, in Modeling Solar Radiation at the Earth Surface, ed. by V. Badescu, (Springer, Berlin, Heidelberg, 2008), pp. 1–27Google Scholar
  41. 41.
    C.A. Gueymard, D.R. Myers, Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling. Sol. Energy 83, 171–185 (2009)CrossRefGoogle Scholar
  42. 42.
    A.K. Rajput, R.K. Tewari, A. Sharma, Utility base estimated solar radiation at destination Pune, Maharashtra, India. Int. J. Pure Appl. Sci. Technol 13(1), 19–26 (2012)Google Scholar
  43. 43.
    J. Almorex, Estimating global solar radiation from common meteorological data in Aranjuez-Spain. Turk. J. Phys. 35, 53–64 (2011)Google Scholar
  44. 44.
    B. Marion, B. Kroposki, K. Emery, J. del Cueto, D. Myers, C. Osterwald, Validation of a Photovoltaic Module Energy Ratings Procedure at NREL (Golden, National Renewable Energy Laboratory, 1999)CrossRefGoogle Scholar
  45. 45.
    M.A. Bashir, H.M. Ali, S. Khalil, M. Ali, A.M. Siddiqui, Comparison of performance measurements of photovoltaic modules during winter months in Taxila, Pakistan. Int. J. Photoenergy, Hindawi Publishing Corporation 2014, Article ID 898414,. 8 pages (2014)Google Scholar
  46. 46.
    J. Cano, Photovoltaic modules: Effect of tilt angle on soiling, MSC Thesis, Arizona State University (2011)Google Scholar
  47. 47.
    S.M. Salih, L.A. Kadim, Effect of tilt angle orientation on photovoltaic module performance. ISESCO J. Sci. Technol 10(17), 19–25 (2014)Google Scholar
  48. 48.
    E.D. Mehleri, P.L. Zervas, H. Sarimveis, J.A. Palyvos, N.C. Markatos, Determination of the optimal tilt angle and orientation for solar photovoltaic arrays. Renew. Energy, Elsevier 35(11), 2468–2475 (2010)CrossRefGoogle Scholar
  49. 49.
    C. Emanuele, The disagreement between anisotropic-isotropic diffuse solar radiation models as a function of solar declination: Computing the optimum tilt angle of solar panels in the area of southern-Italy. Smart Grid Renew. Energy 3, 253–259 (2012)CrossRefGoogle Scholar
  50. 50.
    E.C.J. Kern, M.C. Rissell, Combined photovoltaic and thermal hybrid collector systems. 13th IEEE photovoltaic specialists conference, Washington, D.C., 1978Google Scholar
  51. 51.
    M.J.M. Jong, H.A. Zondag, System studies on combined PV/Thermal panels. 9th international conference on solar energy in high latitudes, Leiden, the Netherlands, 2001Google Scholar
  52. 52.
    P. Barnwal, G.N. Tiwari, Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Sol. Energy 82(12), 1131–1144 (2008)CrossRefGoogle Scholar
  53. 53.
    J. Guo, S. Lin, J.I. Bilbao, S.D. White, A.B. Sproul, A review of photovoltaic thermal (PV/T) heat utilization with low temperature desiccant cooling and dehumidification. Renew. Sustain. Energy Rev. 67, 1–14 (2017)CrossRefGoogle Scholar
  54. 54.
    A.H.A. Al-Waeli, K. Sopian, H.A. Kazem, M.T. Chaichan, PV/T (photovoltaic/thermal): Status and future prospects. Renew. Sustain. Energy Rev. 77, 109–130 (2017)CrossRefGoogle Scholar
  55. 55.
    R. Kumar, M.A. Rosen, A critical review of photovoltaic–thermal solar collectors for air heating. Appl. Energy 88(11), 3603–3614 (2011)CrossRefGoogle Scholar
  56. 56.
    A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, Influence of the base fluid on the thermo-physical properties of nanofluids with surfactant. Case Stud. Therm. Eng . Accepted 13, 100340 (2019). Scholar
  57. 57.
    A.H.A. Al-Waeli, H.A. Kazem, K. Sopian, M.T. Chaichan, Techno-economical assessment of grid connected PV/T using nanoparticles and water as base-fluid systems in Malaysia. Int. J. Sustain. Energy 37(6), 558–578 (2018). Scholar
  58. 58.
    A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, Comparison study of indoor/outdoor experiments of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system enhancement. Energy 151, 33–44 (2018)CrossRefGoogle Scholar
  59. 59.
    A.H.A. Al-Waeli, M.T. Chaichan, H.A. Kazem, K. Sopian, Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energ. Conver. Manage. 148(15), 963–973 (2017). Scholar
  60. 60.
    A.H.A. Al-Waeli, K. Sopian, H.A. Kazem, M.T. Chaichan, Photovoltaic thermal PV/T systems: A review. Int. J. Comput. Appl. Sci 2(2), 62–67 (2017)Google Scholar
  61. 61.
    A.H.A. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, H.A. Hasan, A.N. Al-Shamani, An experimental investigation on using of nano-SiC-water as base-fluid for photovoltaic thermal system. Energy Conserv. Manag 142, 547–558 (2017)CrossRefGoogle Scholar
  62. 62.
    A.H. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, A. Ibrahim, S. Mat, M.H. Ruslan, Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energ. Conver. Manage. 151, 693–708 (2017)CrossRefGoogle Scholar
  63. 63.
    A.H. Al-Walei, M.T. Chaichan, K. Sopian, H.A. Kazem, Energy storage: CFD modeling of thermal energy storage for a Phase Change Materials (PCM) added to a PV/T using nanofluid as a coolant. J. Sci Eng. Res 4(12), 193–202 (2017)Google Scholar
  64. 64.
    A.H.A. Al-Waeli, K. Sopian, H.A. Kazem, J.H. Yousif, M.T. Chaichan, A. Ibrahim, S. Mat, M.H. Ruslan, Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Sol. Energy 162, 378–396 (2018)CrossRefGoogle Scholar
  65. 65.
    A.H.A. Al-Waeli, M.T. Chaichan, K. Sopian, H.A. Kazem, H.B. Mahood, A.A. Khadom, Modeling and experimental validation of a PV/T system using nanofluid coolant and nano-PCM. Sol. Energy 177, 178–191 (2019). Scholar
  66. 66.
    M. Mohsenzadeh, R. Hosseini, A photovoltaic / thermal system with a combination of a booster diffuse re fl ector and vacuum tube for generation of electricity and hot water production. Renew. Energy 78, 245–252 (2015)CrossRefGoogle Scholar
  67. 67.
    S. Calnan, Applications of oxide coatings in photovoltaic devices. Coatings 4, 162–202 (2014)CrossRefGoogle Scholar
  68. 68.
    J.I. Rosell, X. Vallverdu, M.A. Lechon, M. Ibanez, Design and simulation of a low concentrating photovoltaic/thermal system. Energ. Conver. Manage. 46, 3034–3046 (2005)CrossRefGoogle Scholar
  69. 69.
    N. Xu, J. Ji, W. Sun, W. Huang, J. Li, Z. Jin, Numerical simulation and experimental validation of a high concentration photovoltaic / thermal module based on point focus Fresnel lens. Appl. Energy 168, 269–281 (2016)CrossRefGoogle Scholar
  70. 70.
    J.S. Coventry, Performance of a concentrating photovoltaic / thermal solar collector. Sol. Energy 78, 211–222 (2005)CrossRefGoogle Scholar
  71. 71.
    L.R. Bernardo et al., Performance evaluation of low concentrating photovoltaic/thermal systems: A case study from Sweden. Sol. Energy 85, 1499–1510 (2011)CrossRefGoogle Scholar
  72. 72.
    D.B. Singh, G.N. Tiwari, Performance analysis of basin type solar stills integrated with N identical photovoltaic thermal (PVT) compound parabolic concentrator (CPC) collectors: A comparative study. Sol. Energy 142, 144–158 (2017)CrossRefGoogle Scholar
  73. 73.
    D.B. Singh, G.N. Tiwari, Exergo-economic, enviro-economic and productivity analyses of basin type solar stills by incorporating N identical PVT compound parabolic concentrator collectors: A comparative study. Energ. Conver. Manage. 135, 129–147 (2017)CrossRefGoogle Scholar
  74. 74.
    H. Helmers, K. Kramer, Multi-linear performance model for hybrid (C) PVT solar collectors. Sol. Energy 92, 313–322 (2013)CrossRefGoogle Scholar
  75. 75.
    S. Yilmaz, H. Riza, Energy supply in a green school via a photovoltaic-thermal power system. Renew. Sustain. Energy Rev. 57, 713–720 (2016)CrossRefGoogle Scholar
  76. 76.
    S. Sharma, A. Tahir, K.S. Reddy, T.K. Mallick, Solar energy materials & solar cells performance enhancement of a building-integrated concentrating photovoltaic system using phase change material. Sol. Energy Mater. Sol. Cells 149, 29–39 (2016)CrossRefGoogle Scholar
  77. 77.
    M.S. Buday, Measuring irradiance, temperature and angle of incidence effects on photovoltaic modules in Auburn Hills, Michigan, MSC, University of Michigan, (2011)Google Scholar
  78. 78.
    S. Al-Yahyai, Y. Charabi, A. Gastli, Review of the use of numerical weather prediction (NWP) models for wind energy assessment. Renew. Sustain. Energy Rev. 14(9), 3192–3198 (2010)CrossRefGoogle Scholar
  79. 79.
    A. Al-Tarabsheh, S. Voutetakis, A.I. Papadopoulos, B. Seferlis, I. Etiera, O. Saraereh, Investigation of temperature effects in efficiency improvement of non-uniformly cooled photovoltaic cells. Chem. Eng. Trans. 35, 1387–1392 (2013)Google Scholar
  80. 80.
    J.A. del Cueto, PV Module Energy Ratings Part II: Feasibility of Using the PERT in Deriving Photovoltaic Module Energy Ratings (National Renewable Energy Laboratory, Golden, 2007)Google Scholar
  81. 81.
    D.T. Lobera, S. Valkealahti, Dynamic thermal model of solar PV systems under varying climatic conditions. Sol. Energy 93, 183–194 (2013)CrossRefGoogle Scholar
  82. 82.
    E. Zambolin, D. Del Col, Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84, 1382–1396 (2010)CrossRefGoogle Scholar
  83. 83.
    A. Gregg, T. Parker, R. Swenson, A “real world” examination of PV system design and performance. Conf. Rec. IEEE Photovoltaic Spec. Conf. 31, 1587–1592 (2005)Google Scholar
  84. 84.
    Y. Charabi, B.H.M. Rhouma, A. Gastli, GIS-based estimation of roof-PV capacity & energy production for the Seeb region in Oman. IEEE Int. Energy Conf. Renew. Energy 57, 635–644 (2013)CrossRefGoogle Scholar
  85. 85.
    A. Gastli, Y. Charabi, S. Zekri, GIS-based assessment of combined CSP electric power & seawater desalination plant for Duqum-Oman. Renew. Sustain. Energy Rev. 14(2), 821–827 (2010)CrossRefGoogle Scholar
  86. 86.
    S.A. Ghaznafar, M. Fisher, Vegetation of the Arabian Peninsula (Kluer Academin Publishers, Dordrecht, 1998), pp. 5–38CrossRefGoogle Scholar
  87. 87.
    B.R. Hughes, N.B.S. Cherisa, O. Beg, Computational study of improving the efficiency of photovoltaic panels in the UAE. World Acad. Sci. Eng. Technol. 5(1), 33 (2011)Google Scholar
  88. 88.
    G. George Makrides, B. Zinsser, A. Phinikarides, M. Schubert, G.E. Georghiou, Temperature and thermal annealing effects on different photovoltaic technologies. Renew. Energy 43, 407–417 (2012)CrossRefGoogle Scholar
  89. 89.
    F.A. Mutlak, Design and fabrication of parabolic trough solar collector for thermal energy applications, Ph. D Thesis, University of Baghdad, (2011, March)Google Scholar
  90. 90.
    M.T. Chaichan, K.I. Abaas, H.A. Kazem, The effect of variable designs of the central receiver to improve the solar tower efficiency. Int. J. Eng. Sci. 1(7), 56–61 (2012)Google Scholar
  91. 91.
    H.A. Kazem, M.T. Chaichan, Status and future prospects of renewable energy in Iraq. Renew. Sustain. Energy Rev. 16(8), 6007–6012 (2012)CrossRefGoogle Scholar
  92. 92.
    Y. Franghiadakis, P. Tzanetakis, Explicit empirical relation for the monthly average cell-temperature performance ratio of photovoltaic arrays. Prog. Photovolt. Res. Appl. 14, 541–551 (2006)CrossRefGoogle Scholar
  93. 93.
    R. Chenni, M. Makhlouf, T. Kerbache, A. Bouzid, A detailed modeling method for photovoltaic cells. Energy 32, 1724–1730 (2007)CrossRefGoogle Scholar
  94. 94.
    W. Durisch, B. Bitnar, J.C. Mayor, H. Kiess, K.H. Lam, J. Close, Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation. Sol. Energy Mater. Sol. Cells 91, 79–84 (2007)CrossRefGoogle Scholar
  95. 95.
    E. Skoplaki, J.A. Palyvos, Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew. Energy 34, 23–29 (2009)Google Scholar
  96. 96.
    M.G. Farr, J.S. Stein, Spatial variations in temperature across a photovoltaic array, proceeding to IEEE 40th photovoltaic specialist conference (PVSC), 2014Google Scholar
  97. 97.
    A.D. Jones, C.P. Underwood, A thermal model for photovoltaic systems. Sol. Energy 70, 349–359 (2001)CrossRefGoogle Scholar
  98. 98.
    H.F. Tsai, H.L. Tsai, Implementation and verification of integrated thermal and electrical models for commercial PV modules. Sol. Energy 86, 654–665 (2012)CrossRefGoogle Scholar
  99. 99.
    V.V. Tyagia, S.C. Kaushik, S.K. Tyagi, Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew. Sustain. Energy Rev. 16, 1383–1398 (2012)CrossRefGoogle Scholar
  100. 100.
    H.G. Teo, P.S. Lee, M.N.A. Hawlader, An active cooling system for photovoltaic modules. Appl. Energy 90, 309–315 (2012)CrossRefGoogle Scholar
  101. 101.
    F. Sarhaddi, S. Farahat, H. Ajam, A. Behzadmehr, M. Adeli, An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Appl. Energy 87, 2328–2339 (2010)CrossRefGoogle Scholar
  102. 102.
    M.A.M. Rosli, S. Mat, M.K. Anuar, K. Sopian, M.Y. Sulaiman, S. Ellias, Progress on flat-plate water based of photovoltaic thermal (PV/T) system: A review. Iranica J. Energy Environ 5(4), 407–418 (2014)Google Scholar
  103. 103.
    S. Krauter, Increased electrical yield via water flow over the front of photovoltaic panels. Sol. Energy Mater. Sol. Cells 82, 131–137 (2004)CrossRefGoogle Scholar
  104. 104.
    S. Odehand, M. Behnia, Improving photovoltaic module efficiency using water cooling. Heat Transfer Eng 30(6), 499–505 (2009)CrossRefGoogle Scholar
  105. 105.
    A.S. Joshi, A. Tiwari, G.N. Tiwari, I. Dincer, B.V. Reddy, Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system. Int. J. Therm. Sci. 48, 154–164 (2009)CrossRefGoogle Scholar
  106. 106.
    D.J. Yang, Z.F. Yuan, P.H. Lee, H.M. Yin, Simulation and experimental validation of heat transfer in a novel hybrid solar panel. Int. J. Heat Mass Transf. 55, 1076–1082 (2012)CrossRefGoogle Scholar
  107. 107.
    T. Kerzmann, L. Schaefer, System simulation of a linear concentrating photovoltaic system with an active cooling system. Renew. Energy 41, 254–261 (2012)CrossRefGoogle Scholar
  108. 108.
    M. Chandrasekar, S. Suresh, T. Senthilkumar, M.G. Karthikeyan, Passive cooling of standalone flat PV module with cotton wick structures. Energ. Conver. Manage. 71, 43–50 (2013)CrossRefGoogle Scholar
  109. 109.
    J.R.E.C. Kern, M.C. Russell, Combined photovoltaic and thermal hybrid collector systems, in Proceedings of the 13th IEEE PV Specialist Conference, (1978), pp. 1153–1157Google Scholar
  110. 110.
    X. Zhang, X. Zhao, S. Smith, J. Xub, X. Yuc, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renew. Sustain. Energy Rev. 16, 599–617 (2012)CrossRefGoogle Scholar
  111. 111.
    X. Zhao, X. Zhang, S.B. Riffat, X. Su, Theoretical investigation of a novel PV/T roof module for heat pump operation. Energ. Conver. Manage. 52, 603–614 (2011)CrossRefGoogle Scholar
  112. 112.
    K.E. Amori, H.M.T. Al-Najar, Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq. Appl. Energy 98(100), 384–395 (2012)CrossRefGoogle Scholar
  113. 113.
    M. Koehl, M. Heck, S. Wiesmeier, Modeling of conditions for accelerated life time testing of humidity impact on PV-modules based on monitoring of climatic data. Sol. Energy Mater. Sol. Cells 99, 282–291 (2012)CrossRefGoogle Scholar
  114. 114.
    M.D. Kempe, Modeling of rates of moisture ingress into photovoltaic modules. Sol. Energy Mater. Sol. Cells 90(16), 2720–2738 (2006)CrossRefGoogle Scholar
  115. 115.
    Rotronic Instrument Corp., The Rotronic Humidity Handbook, All you never wanted to know about humidity and didn’t want to ask! 12/2005.
  116. 116.
    A.H. Fanney, M.W. Davis, B.P. Dougherty, D.L. King, W.E. Boyson, J.A. Kratochvil, Comparison of photovoltaic module performance measurements. Trans. ASME 128, 152 (2006)Google Scholar
  117. 117.
    K. Morita, T. Inoue, H. Kato, I. Tsuda, Y. Hishikawa, Degradation factor analysis of crystalline-Si PV modules through long-term field exposure test, in Proceddings of the 3rd World Conference on Photovoltaic Energy Conversion, (2003, May), pp. 1948–1951Google Scholar
  118. 118.
    N.G. Dhere, N.R. Raravikar, Adhesional shear strength and surface analysis of a PV module deployed in harsh coastal climate. Sol. Energy Mater. Sol. Cells 67(1–4), 363–367 (2001)CrossRefGoogle Scholar
  119. 119.
    B. Bhattachary, S. Dey, B. Mustaphi, Some analytical studies on the performance of grid connected solar photovoltaic system with different parameters, proceeding to 3rd international conference on material processing and materials science characterization (ICMPC-2014), vol. 6, pp. 1942–1950, 2014Google Scholar
  120. 120.
    R. Laronde, A. Charki, D. Bigaud, Lifetime estimation of a photovoltaic module subjected to corrosion due to damp heat testing. J. Sol. Energy Eng 135(2), Article ID 021010 . 8 pages (2013)CrossRefGoogle Scholar
  121. 121.
    C. Peike, S. Hoffmann, P. Hulsmann, Origin of dampheat induced cell degradation. Sol. Energy Mater. Sol. Cells 116, 49–54 (2013)CrossRefGoogle Scholar
  122. 122.
    F. Touati, A. Massoud, J. Abu Hamad, S.A. Saeed, Effects of environmental and climatic conditions on PV efficiency in Qatar, International conference on renewable energies and power quality (ICREPQ’13), Bilbao (Spain), 20th to 22th March, 2013Google Scholar
  123. 123.
    B.A.L. Gwandu, D.J. Creasey, Humidity: A factor in the appropriate positioning of a photovoltaic power station. Renew. Energy 6(3), 313–316 (1995)CrossRefGoogle Scholar
  124. 124.
    M.D. Kempe, Modeling of rates of moisture ingress into photovoltaic modules. Sol. Energy Mater. Sol. Cells 90(16), 2720–2738 (2006)CrossRefGoogle Scholar
  125. 125.
    J.K. Prakash, N. Gopinath, V. Kirubakaran, Optimization of solar PV panel output: A viable and cost effective solotion, International Journal of Advanced Technology & Engineering Research (IJATER) National Conference on “Renewable Energy Innovations for Rural Development” ISSN No: 2250–3536 20, New Delhi (2014)Google Scholar
  126. 126.
    Z.A. Darwish, H.A. Kazem, K. Sopian, M.A. Alghoul, M.T. Chaichan, Impact of some environmental variables with dust on solar photovoltaic (PV) performance: Review and research status. Int. J. Energy Environ 7(4), 152–159 (2013)Google Scholar
  127. 127.
    V.B. Omubo-Pepple, C. Israel-Cookey, G.I. Alamunokuma, Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. Eur. J. Sci. Res. 35, 173–180 (2009)Google Scholar
  128. 128.
    A.A. Katkar, N.N. Shinde, G.C. Koli, S.P. Gaikwad, Evaluation of industrial solar cell w.r.t. temperature. IOSR J. Mech. Civ. Eng (IOSR-JMCE) 3, 27–38 (2013)Google Scholar
  129. 129.
    H.A. Kazem, M.T. Chaichan, I.M. Al-Shezawi, H.S. Al-Saidi, H.S. Al-Rubkhi, J.K. Al-Sinani, A.H.A. Al-Waeli, Effect of humidity on the PV performance in Oman. Asian Trans. Eng 2(4), 29–32 (2012)Google Scholar
  130. 130.
    T. Al-Hanai, R.B. Hashim, L. El Chaar, L.A. Lamont, Environmental effects on a grid connected 900 W photovoltaic thin-film amorphous silicon system. Renew. Energy 36, 2615–2622 (2011)CrossRefGoogle Scholar
  131. 131.
    E.B. Ettah, A.P. Udoimuk, J.N. Obiefuna, F.E. Opara, The effect of relative humidity on the efficiency of solar panels in Calabar, Nigeria. Univers J. Manag. Soc. Sci 2(3), 8–11 (2012)Google Scholar
  132. 132.
    H.A. Kazem, M.T. Chaichan, Effect of humidity on photovoltaic performance based on experimental study. Int. J. Appl. Eng. Res. 10(23), 43572–43577 (2015)Google Scholar
  133. 133.
    E. Klampaftis, K.R. McIntosh, B.S. Richards, Degradation of an undiffused SI–SIO2 interface due to humidity, 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3–7 Sept 2007Google Scholar
  134. 134.
    M.K. Panjwani, B. NarejoG, Effect of humidity on the efficiency of solar cell (photovoltaic). Int. J. Eng. Res. General Sci 2(4), 499–503 (2014)Google Scholar
  135. 135.
    V.B. Omubo-Pepple, I. Tamunobereton-ari, M.A. Briggs-Kamara, Influence of meteorological parameters on the efficiency of photovoltaic module in some cities in the Niger delta of Nigeria. J. Asian Sci. Res 3(1), 107–113 (2013)Google Scholar
  136. 136.
    A. Rachman, K. Sopian, S. Mat, M. Yahya, Feasibility study and performance analysis of solar assisted desiccant cooling technology in hot and humid climate. Am. J. Environ. Sci. 7(3), 207–211 (2011)CrossRefGoogle Scholar
  137. 137.
    M.D. Kemp, Control of moisture ingress into photovoltaic modules, in 31st IEEE Photovoltaic Specialists Conference and Exhibition, (Lake Buena Vista, Florida, 2005)Google Scholar
  138. 138.
    J.H. Wohlgemuth, S. Kurtz, Reliability testing beyond qualification as a key component in photovoltaics progress toward grid parity, proceeding in IEEE international reliability physics symposium monterey, California, April 10–14, 2011Google Scholar
  139. 139.
    IEC: International Electro-technical Commission, Standard IEC61215: Crystalline silicon terrestrial photovoltaic (PV) modules, design qualification and type approval IEC Central Office, Geneva, Switzerland, 1987Google Scholar
  140. 140.
    M. Vazquez, R.S. Ignacio, Photovoltaic module reliability model based on field degradation studies. Prog. Photovolt. Res. Appl. 16, 419–433 (2008)CrossRefGoogle Scholar
  141. 141.
    M.A. Quintana, D.L. King, T.J. McMahon, C.R. Osterwald, Commonly observed degradation in field-aged photovoltaic modules, in Proc. 29th IEEE Photovoltaic Specialists Conference, (2002), pp. 1436–1439Google Scholar
  142. 142.
    M.A. Munoz, M.C. Alonso-Garcia, V. Nieves, F. Chenlo, Early degradation of silicon PV modules and guaranty conditions. Sol. Energy 85, 2264–2274 (2011)CrossRefGoogle Scholar
  143. 143.
    A. Ndiaye, A. Charki, A. Kobi, C.M.F. Ke’be´, P.A. Ndiaye, V. Sambou, Degradations of silicon photovoltaic modules: A literature review. Sol. Energy 96, 140–151 (2013)CrossRefGoogle Scholar
  144. 144.
    A. Skoczek, T. Sample, E.D. Dunlop, H.A. Ossenbrink, Electrical performance results from physical stress testing of commercial PV modules to the IEC61215 test sequence. Sol. Energy Mater. Sol. Cells 92, 1593–1604 (2008)CrossRefGoogle Scholar
  145. 145.
    K.W. Jansen, A.E. Delahoy, A laboratory technique for the evaluation of electrochemical transparent conductive oxide delamination from glass substrates. Thin Solid Films 423, 153–160 (2003)CrossRefGoogle Scholar
  146. 146.
    G. Oreski, G.M. Wallner, Aging mechanisms of polymeric films for PV encapsulation. Sol. Energy 79, 612–617 (2005)CrossRefGoogle Scholar
  147. 147.
    G. Oreski, G.M. Wallner, Evaluation of the aging behavior of ethylene copolymer films for solar applications under accelerated weathering conditions. Sol. Energy 83, 1040–1047 (2009)CrossRefGoogle Scholar
  148. 148.
    T. Kojima, T. Yanagisawa, The evaluation of accelerated test for degradation a stacked a-Si solar cell and EVA films. Sol. Energy Mater. Sol. Cells 81(1), 119–123 (2004)CrossRefGoogle Scholar
  149. 149.
    C.R. Osterwald, A. Anderberg, S. Rummel, L. Ottoson, Degradation analysis of weathered crystalline-silicon PV modules, in 29th IEEE Photovoltaic Specialists Conference, (New Orleans, Louisiana, 2002)Google Scholar
  150. 150.
    J.H. Wohlgemuth, D.W. Cunningham, A.M. Nguyen, G. Kelly, D. Amin, Failure modes of crystalline silicon modules, in Proceedings of PV Module Reliability Workshop, (2010)Google Scholar
  151. 151.
    E. Rueland, A. Herguth, A. Trummer, S. Wansleben, P. Fath, Optical l-crack detection in combination with stability testing for inline inspection of wafers and cells, in Proceedings of 20th EUPVSEC, (Barcelona, 2005), pp. 3242–3245Google Scholar
  152. 152.
    W. Dallas, O. Polupan, S. Ostapenko, Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers. Meas. Sci. Technol. 18, 852–858 (2007)CrossRefGoogle Scholar
  153. 153.
    V.J. Fesharaki, M. Dehghani, J.J. Fesharaki, The effect of temperature on photovoltaic cell efficiency, in Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation (ETEC ‘11), Tehran, Iran, (2011, November)Google Scholar
  154. 154.
    R. Siddiqui, U. Bajpai, Deviation in the performance of solar module under climatic parameter as ambient temperature and wind velocity in composite climate. Int. J. Renew. Energy Res 2(3), 486–490 (2012)Google Scholar
  155. 155.
    E.B. Ettah, E.E. Eno, A.B. Udoimuk, The effects of solar panel temperature on the power output efficiency Calabar, Nigeria. J. Assoc. Radiograph Nigeria 23, 16–22 (2009)Google Scholar
  156. 156.
    W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (Wiley, New York, 1999)Google Scholar
  157. 157.
    J.K. Kaldellis, M. Kapsali, K.A. Kavadias, Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. Renew. Energy 66, 612–624 (2014)CrossRefGoogle Scholar
  158. 158.
    H.W. Tieleman, Wind tunnel simulation of the turbulence in the surface layer. J. Wind Eng. Ind. Aerodyn. 36, 1309–1318 (1990)CrossRefGoogle Scholar
  159. 159.
    J. Burdick et al., Qualification testing of thin-film and crystalline photovoltaic modules. Sol. Energy Mater. Sol. Cells 41/42, 575–586 (1996)CrossRefGoogle Scholar
  160. 160.
    B. Edwards, Collector deflections due to wind gusts and control scheme design. Sol. Energy 25, 231–234 (1980)CrossRefGoogle Scholar
  161. 161.
    A. Radu, E. Axinte, C. Theohari, Steady wind pressures on solar collectors on flat- roofed buildings. J. Wind Eng. Ind. Aerodyn. 23(1–3), 249–258 (1986)CrossRefGoogle Scholar
  162. 162.
    A. Radu, E. Axinte, Wind forces on structures supporting solar collectors. J. Wind Eng. Ind. Aerodyn. 32, 93–100 (1989)CrossRefGoogle Scholar
  163. 163.
    Y. Zhou, A. Kareem, Definition of wind profiles in ASCE 7. J. Struct. Eng. 128(8), 1082–1086 (2002)CrossRefGoogle Scholar
  164. 164.
    National Research Council, National Building Code of Canada, 13th edn. (Associate Committee on the National Building Code, Ottawa, 2010)Google Scholar
  165. 165.
    G.S. Wood, R.O. Denoon, K.C. Kwok, Wind loads on industrial solar panel arrays and supporting roof structure. Wind Struct. 4(6), 481–494 (2001)CrossRefGoogle Scholar
  166. 166.
    G.A. Kopp, D. Surry, K. Chen, Wind loads on a solar array. Wind Struct. 5(5), 393–406 (2002)CrossRefGoogle Scholar
  167. 167.
    T. Bhattacharya, A.K. Chakraborty, K. Pal, Effects of ambient temperature and wind speed on performance of monocrystalline solar photovoltaic module in Tripura, India, Hindawi Publishing Corporation. J. Sol. Energy, Article ID 817078, 5 pages (2014). Scholar
  168. 168.
    N. Vasan, T. Stathopoulos, Wind tunnel assessment of the wind velocity distribution on vertical façades, Proceedings of eSim 2012: The Canadian conference on building simulation, Page 61 of 614, Halifax Nova Scotia, Canada, May 1–4 2012Google Scholar
  169. 169.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37). Prog. Photovolt. Res. Appl. 19, 84–92 (2011)CrossRefGoogle Scholar
  170. 170.
    A. Rao, M. Mani, Evaluating the nature and significance of ambient wind regimes on solar photovoltaic system performance, Building Simulation Applications BSA 2013, 1st IBPSA Italy conference, Bozen-Bolzano, 2013, pp. 395–405Google Scholar
  171. 171.
    H. Matsukawa, K. Kurokawa, Temperature fluctuation analysis of photovoltaic modules at short time interval, in 31st IEEE Photovoltaic Specialists Conference, (2005), pp. 1816–1819Google Scholar
  172. 172.
    S. Armstrong, W.G. Hurley, A thermal model for photovoltaic panels under varying atmospheric conditions. Appl. Therm. Eng. 30, 1488–1495 (2010)CrossRefGoogle Scholar
  173. 173.
    C. Schwingshackla, M. Petittaa, J.E. Wagnera, G. Belluardoc, D. Moserc, M. Castellia, M. Zebischa, A. Tetzlaff, Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation. Energy Procedia 40, 77–86 (2013)CrossRefGoogle Scholar
  174. 174.
    M. Mattei, G. Notton, G. Cristofari, M. Muselli, P. Poggi, Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew. Energy 31, 553–567 (2006)CrossRefGoogle Scholar
  175. 175.
    E. Skoplaki, J.A. Palyvos, Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew. Energy 34, 23–29 (2009)CrossRefGoogle Scholar
  176. 176.
    E. Skoplaki, A.G. Boudouvis, J.A. Palyvos, A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Sol. Energy Mater. Sol. Cells 92, 1393–1402 (2008)CrossRefGoogle Scholar
  177. 177.
    M. Koehl, M. Heck, S. Wiesmeier, J. Wirth, Modeling of the nominal operating cell temperature based on outdoor weathering. Sol. Energy Mater. Sol. Cells 95, 1638–1646 (2011)CrossRefGoogle Scholar
  178. 178.
    S. Kurtz, K. Whitfield, D. Miller, J. Joyce, J. Wohlgemuth, M. Kempe, et al., Evaluation of high-temperature exposure of rackmounted photovoltaic modules, in 34th IEEE Photovoltaic Specialists Conference (PVSC), (2009), pp. 2399–2404CrossRefGoogle Scholar
  179. 179.
    H. Chen, X. Chen, S. Li, H. Ding, Numerical study on the electrical performance of photovoltaic panel with passive cooling of natural ventilation. Int. J. Smart Grid Clean Energy 4(4), 395–400 (2014)Google Scholar
  180. 180.
    S. Mekhilef, R. Saidur, M. Kamalisarvestani, Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 16, 2920–2925 (2012)CrossRefGoogle Scholar
  181. 181.
    P. Trinuruk, C. Sorapipatanal, D. Chenvidhya, Effects of air gap spacing between a photovoltaic panel and building envelope on electricity generation and heat gains through a building. Asian J. Energy Environ 8(1 and 2), 73–95 (2007)Google Scholar
  182. 182.
    C.P.W. Geurts, R.D.J.M. Steenbergen, Full scale measurements of wind loads on stand-off photovoltaic systems, in 5th European & African Conference on Wind Engineering (EACWE), (Florence, Italy, 2009)Google Scholar
  183. 183.
    R. Velicu, G. Moldovean, I. Scaletchi, B.R. Butuc, Wind loads on an azimuthal photovoltaic platform. Experimental study, in Proceeding of International Conference on Renewable Energies and Power Quality, (Granada, Spain, 2010)Google Scholar
  184. 184.
    M. Shademan, R.M. Barron, R. Balachandar, H. Hangan, Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations. Can. J. Civ. Eng 41, 728–738 (2014)CrossRefGoogle Scholar
  185. 185.
    A.A. Ogedengbe, H. Hangan, K. Siddiqui, Experimental investigation of wind effects on a standalone photovoltaic (PV) module. Renew. Energy 78, 657–665 (2015)CrossRefGoogle Scholar
  186. 186.
    D. Goossens, E. Van Kerschaever, Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol. Energy 66(4), 277–289 (1999)CrossRefGoogle Scholar
  187. 187.
    H.A. Kazem, M.T. Chaichan, A.H.A. Al-Waeli, K. Mani, Effect of shadows on the performance of solar photovoltaic, in Mediterranean Green Buildings & Renewable Energy, (2017), pp. 379–385. Scholar
  188. 188.
    U.S. Energy Information Administration, International energy statistics—total electricity installed capacity (2010, Aug)Google Scholar
  189. 189.
    L. Bony, S. Doig, C. Hart, E. Maurer, S. Newman, Achieving low-cost solar PV: Industry workshop recommendations for near-term balance of system cost reductions, Opportunity 1: Efficient design for wind forces, Rocky Mountain Institute,, (2010)Google Scholar
  190. 190.
    C.A. Gueymard, The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 76(4), 423–453 (2004)CrossRefGoogle Scholar
  191. 191.
    H. Li, W. Ma, X. Wang, Y. Lian, Estimating monthly average daily diffuse solar radiation with multiple predictors: A case study. Renew. Energy 36, 1944 (2011)CrossRefGoogle Scholar
  192. 192.
    C.A. Gueymard, Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol. Energy 83(3), 432–444 (2009)CrossRefGoogle Scholar
  193. 193.
    A.I. Kudish, E.G. Evseev, The analysis of solar UVB radiation as a function of solar global radiation, ozone layer thickness and aerosol optical density. Renew. Energy 36, 1854 (2010)CrossRefGoogle Scholar
  194. 194.
    M.T. Chaichan, H.A. Kazem, A.A. Kazem, I. Abaas Kh, K.A.H. Al-Asadi, The effect of environmental conditions on concentrated solar system in desertec weathers. Int. J. Sci. Eng. Res. 6(5), 850–856 (2015)Google Scholar
  195. 195.
    M.T. Chaichan, K.I. Abass, H.A. Kazem, Dust and pollution deposition impact on a solar chimney performance. Int. Res. J. Adv. Eng. Sci 3(1), 127–132 (2018)Google Scholar
  196. 196.
    H.A. Kazem, M.T. Chaichan, A.H.A. Alwaeli, The impact of dust’s physical properties on photovoltaic modules outcomes, Solar energy conference, London UK, 2018Google Scholar
  197. 197.
    M.T. Chaichan, K.I. Abass, H.A. Kazem, Energy yield loss caused by dust and pollutants deposition on concentrated solar power plants in Iraq weathers. Int. Res. J. Adv. Eng. Sci 3(1), 160–169 (2018)Google Scholar
  198. 198.
    H.K. Eliminir, A.E. Ghitas, R.H. Hamid, F.E. Hussainy, M.M. Beheary, K.M. Abdel-Moneim, Effect of dust on the transparent cover of solar collectors. Energ. Conver. Manage. 47, 3192–3203 (2006)CrossRefGoogle Scholar
  199. 199.
    H. Jiang, L. Lu, K. Sun, Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 45, 4299–4304 (2011)CrossRefGoogle Scholar
  200. 200.
    M.C. Peel, B.L. Finlayson, T.A. McMahon, Updated world map of the Köppen- Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007)CrossRefGoogle Scholar
  201. 201.
    D. Goosens, E.V. Kerschaever, Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Sol. Energy 66, 277–289 (1999)CrossRefGoogle Scholar
  202. 202.
    R.T.A. Hamdi, S.H. Hafed, M.T. Chaichan, H.A. Kazem, Dust impact on the photovoltaic outcomes. Int. J. Comput. Appl. Sci 5(2), 385–390 (2018)Google Scholar
  203. 203.
    M.T. Chaichan, H.A. Kazem, Effect of sand, ash and soil on photovoltaic performance: An experimental study. Int. J. Sci. Eng. Sci 1(2), 27–32 (2017)Google Scholar
  204. 204.
    M.T. Chaichan, B.A. Mohammed, H.A. Kazem, Effect of pollution and cleaning on photovoltaic performance based on experimental study. Int. J. Sci. Eng. Res. 6(4), 594–601 (2015)Google Scholar
  205. 205.
    H. Hottel, B. Woertz, Performance of flat-plate solar-heat collectors. Trans. Am. Soc. Mech. Eng. (USA) 64, 91 (1942)Google Scholar
  206. 206.
    B. Nimmo, S.A.M. Said, Effects of dust on the performance of thermal and photovoltaic flat plate collectors in Saudi Arabia—preliminary results, in Proceedings of the 2nd Miami International Conference on Alternative Energy Sources, ed. by T. N. Vezirogluv, (1979, Dec 10–13), pp. 223–225Google Scholar
  207. 207.
    A. Salim, F. Huraib, N. Eugenio, PV power-study of system options and optimization, in Proceedings of the 8th European PV Solar Energy Conference, (1988)Google Scholar
  208. 208.
    A. Maghrabi, B. Alharbi, N. Tapper, Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity. Atmos. Environ. 45(13), 2164–2173 (2011)CrossRefGoogle Scholar
  209. 209.
    F. Wakim, Introduction of PV Power Generation to Kuwait, Kuwait Institute for Scientific Researchers [Report No. 440] (1981)Google Scholar
  210. 210.
    A.A.M. Sayigh, Effect of dust on flat plate collectors, in Sun: Mankind’s Future Source of Energy; Proceedings of the International Solar Energy Congress, New Delhi, ed. by F. de Winter, M. Cox, vol. 2, (Pergamon Press, New York, 1978), pp. 960–964CrossRefGoogle Scholar
  211. 211.
    A.A.M. Sayigh, S. Al-Jandal, H. Ahmed, Dust effect on solar flat surfaces devices in Kuwait. Proceedings of the workshop on the physics of non-conventional energy sources and materials science for energy, ICTP, Triest, Italy. pp. 353–67, 1985Google Scholar
  212. 212.
    F. Touati, M. Al-Hitmi, H. Bouchech, Towards understanding the effects of climatic and environmental factors on solar PV performance in Arid Desert Regions (Qatar) for various PV technologies”, World renewable energy congress, Indonesia, international conference on renewable energy and energy efficiency, Bali, Indonesia, 17–19 Oct 2011Google Scholar
  213. 213.
    F. Touati, A. Massoud, J. Abu Hamad, S.A. Saeed, Effects of environmental and climatic conditions on PV efficiency in Qatar, International conference on renewable energies and power quality (ICREPQ’13), Bilbao (Spain), 20–22 March, 2013Google Scholar
  214. 214.
    Z.A. Darwish, H.A. Kazem, K. Sopian, M.A. Al-Goul, M.T. Chaichan, Impact of some environmental variables with dust on solar photovoltaic (PV) performance: Review and research status. Int. J. Energy Environ. 7(4), 152 (2013)Google Scholar
  215. 215.
    Z.A. Darwish, H.A. Kazem, K. Sopian, M.A. Al-Goul, H. Alawadhi, Effect of dust pollutant type on photovoltaic performance. Renew. Sustain. Energy Rev. 41, 735–744 (2015)CrossRefGoogle Scholar
  216. 216.
    H.A. Kazem, T. Khatib, K. Sopian, F. Buttinger, W. Elmenreich, A.S. Albusaidi, Effect of dust deposition on the performance of multi-crystalline photovoltaic modules based on experimental measurements. Int. J. Renew. Energy Res 3(4), 850–853 (2013)Google Scholar
  217. 217.
    H.A. Kazem, M.T. Chaichan, S.A. Saif, A.A. Dawood, S.A. Salim, A.A. Rashid, A.A. Alwaeli, Experimental investigations of dust type effect on photovoltaic systems in North Region, Oman. Int. J. Sci. Eng. Res. 6(7), 293–298 (2015)Google Scholar
  218. 218.
    H.A. Kazem, M.T. Chaichan, Experimental effect of dust physical properties on photovoltaic module in northern Oman. Sol. Energy 139, 68–80 (2016). Scholar
  219. 219.
    A.A. Kazem, M.T. Chaichan, H.A. Kazem, Effect of dust on photovoltaic utilization in Iraq: Review article. Renew. Sustain. Energy Rev. 37, 734–749 (2014)CrossRefGoogle Scholar
  220. 220.
    S.P. Sukhatme, Solar Energy: Principles of Thermal Collection and Storage (Tata McGraw-Hill, New Delhi, 2003)Google Scholar
  221. 221.
    N. Nahar, J. Gupta, Effect of dust on transmittance of glazing materials for solar collectors under arid zone conditions of India. Sol. Wind Technol. 7, 237–243 (1990)CrossRefGoogle Scholar
  222. 222.
    Al-Sayyah, J. Stark, T. Abuhamed, W. Weisinger, M. Horenstein, M.K. Mazumder, Energy yield loss caused by dust deposition in solar power plants, Proc. 2012 joint electrostatics conference, 2012Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ali H. A. Al-Waeli
    • 1
  • Hussein A. Kazem
    • 2
  • Miqdam Tariq Chaichan
    • 3
  • Kamaruzzaman Sopian
    • 1
  1. 1.Solar Energy Research InstituteUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of EngineeringSohar UniversitySoharOman
  3. 3.Energy and Renewable Energies Technology CenterUniversity of TechnologyBaghdadIraq

Personalised recommendations