Advanced PV/T Systems

  • Ali H. A. Al-Waeli
  • Hussein A. Kazem
  • Miqdam Tariq Chaichan
  • Kamaruzzaman Sopian


Advanced PV/T systems are introduced and explained in detail, in this chapter. The concepts of novel base fluids such as nanofluids and their application in PV/T systems are described. Nanofluid-based PV/T systems are introduced, along with nanofluid preparation, mixing, and thermophysical property tests. The concept and methodology of the two-step method for preparing nanofluids to be used in cooling of PV modules is illustrated and supported by literature review. Comprehensive literature review on nanofluid-based PV/T systems was conducted to view nanofluids in flat-plate collectors (FPC), spectral splitting (PV/T) collectors, and spectral selective nanofluids and jet impingement (PV/T) collectors and, furthermore, the various advanced types of nanofluids, such as carbon nanotubes (CNT)-based PV/T, low-concentrated PV/T collectors, hybrid photovoltaic thermoelectric systems with nanofluids, phase change material (PCM), and nano-PCM-based PV/T systems. Furthermore, an introduction to grid-connected PV systems in terms of elements, design considerations, and technical calculations of specific yield, capacity factor, performance ratio, etc. The use of artificial neural networks (ANN) to predict the performance of PV/T collectors was also introduced and explained, followed by brief description of applications of PV/T systems.


Artificial Neural Networks (ANN) Nanofluids Phase change material (PCM) Nano-PCM Carbon nanotubes (CNT) 


  1. 1.
    A.H. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, H.A. Hasan, A.N. Al-Shamani, An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Conver. Manage. 142, 547–558 (2017)CrossRefGoogle Scholar
  2. 2.
    A.H. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, A. Ibrahim, S. Mat, M.H. Ruslan, Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Conver. Manage. 151, 693–708 (2017)CrossRefGoogle Scholar
  3. 3.
    J.H. Kim, S.H. Park, J.G. Kang, J.T. Kim, Experimental performance of heating system with building-integrated PVT (BIPVT) collector. Energy Procedia 48, 1374–1384 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Fuentes, M. Vivar, J. de la Casa, J. Aguilera, An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV. Renew. Sustain. Energy Rev. 93, 110–120 (2018)CrossRefGoogle Scholar
  5. 5.
    N.A.C. Sidik, I.M. Adamu, M.M. Jamil, G.H.R. Kefayati, R. Mamat, G. Najafi, Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int. Commun. Heat Mass Transfer 78, 68–79 (2016)CrossRefGoogle Scholar
  6. 6.
    W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater. 2012, 1 (2012)Google Scholar
  7. 7.
    X.F. Li, D.S. Zhu, X.J. Wang, N. Wang, J.W. Gao, H. Li, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochimica Acta 469(1–2), 98–103 (2008)CrossRefGoogle Scholar
  8. 8.
    A.A. Hawwash, A.K.A. Rahman, S.A. Nada, S. Ookawara, Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids. Appl. Therm. Eng. 130, 363–374 (2018)CrossRefGoogle Scholar
  9. 9.
    R.A. El-Salamony, R.E. Morsi, A.M. Alsabagh, Preparation, stability and photocatalytic activity of titania nanofluid using gamma irradiated titania nanoparticles by two-step method. J Nanofluids 4, 442–448 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Mukherjee, S. Paria, Preparation and stability of nanofluids-a review. IOSR J. Mech. Civil Eng. 9(2), 63–69 (2013)CrossRefGoogle Scholar
  11. 11.
    N.A. Ali, Preparation and characterisation of physicochemical properties of Aluminium Oxide (Al2O3)-Water Nanofluids Using Two Step Methods (Doctoral dissertation, UMP) (2010)Google Scholar
  12. 12.
    S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 388(1–3), 41–48 (2011)CrossRefGoogle Scholar
  13. 13.
    J.B. Castellanos, Thermal conductivity of alumina and silica nanofluids (Minnesota State University, Mankato, 2014)Google Scholar
  14. 14.
    H.P. Lehmann, X. Fuentes-Arderiu, L.F. Bertello, Glossary of terms in quantities and units in clinical chemistry (IUPAC-IFCC recommendations 1996). Pure Appl. Chem. 68(4), 957–1000 (1996)CrossRefGoogle Scholar
  15. 15.
    S.K. Das, S.U. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology (Wiley, 2007)Google Scholar
  16. 16.
    S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer 125(4), 567–574 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Drzazga, M. Lemanowicz, G. Dzido, A. Gierczycki, Preparation of metal oxide-water nanofluids by two-step method. Inż. Ap. Chem. 51(5), 213–215 (2012)Google Scholar
  18. 18.
    Y. Khanjari, F. Pourfayaz, A.B. Kasaeian, Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conver. Manage. 122, 263–278 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Yousefi, F. Veysi, E. Shojaeizadeh, S. Zinadini, An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 39(1), 293–298 (2012)CrossRefGoogle Scholar
  20. 20.
    D. Jing, Y. Hu, M. Liu, J. Wei, L. Guo, Preparation of highly dispersed nanofluid and CFD study of its utilization in a concentrating PV/T system. Solar Energy 112, 30–40 (2015)CrossRefGoogle Scholar
  21. 21.
    A.H. Al-Waeli, K. Sopian, H.A. Kazem, M.T. Chaichan, Photovoltaic/Thermal (PV/T) systems: status and future prospects. Renew. Sustain. Energy Rev. 77, 109–130 (2017)CrossRefGoogle Scholar
  22. 22.
    J.J. Michael, S. Iniyan, Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide–water nanofluid. Solar Energy 119, 439–451 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Purohit, S. Jakhar, P. Gullo, M.S. Dasgupta, Heat transfer and entropy generation analysis of alumina/water nanofluid in a flat plate PV/T collector under equal pumping power comparison criterion. Renew. Energy 120, 14–22 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Khanjari, A.B. Kasaeian, F. Pourfayaz, Evaluating the environmental parameters affecting the performance of photovoltaic thermal system using nanofluid. Appl. Therm. Eng. 115, 178–187 (2017)CrossRefGoogle Scholar
  25. 25.
    H.A. Hussien, A.H. Noman, A.R. Abdulmunem, Indoor investigation for improving the hybrid photovoltaic/thermal system performance using nanofluid (Al2O3-water). Eng. Technol. J. 33(4 Part (A) Engineering), 889–901 (2015)Google Scholar
  26. 26.
    A. Mojiri, R. Taylor, E. Thomsen, G. Rosengarten, Spectral beam splitting for efficient conversion of solar energy—a review. Renew. Sustain. Energy Rev. 28, 654–663 (2013)CrossRefGoogle Scholar
  27. 27.
    A.G. Imenes, D.R. Mills, Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Solar Energy Mater. Solar Cells 84(1–4), 19–69 (2004)CrossRefGoogle Scholar
  28. 28.
    M.A.C. Chendo, D.E. Osborn, R. Swenson, Analysis of spectrally selective liquid absorption filters for hybrid solar energy conversion. In Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IV (Vol. 562, pp. 160–166). International Society for Optics and Photonics (1985, December)Google Scholar
  29. 29.
    R. Looser, M. Vivar, V. Everett, Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications. Appl. Energy 113, 1496–1511 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Kaluza, K.H. Funken, U. Groer, A. Neumann, K.J. Riffelmann, Properties of an optical fluid filter: theoretical evaluations and measurement results. Le Journal de Physique IV 9(PR3), Pr3-655 (1999)Google Scholar
  31. 31.
    S.S. Joshi, A.S. Dhoble, P.R. Jiwanapurkar, Investigations of different liquid based spectrum beam splitters for combined solar photovoltaic thermal systems. J. Solar Energy Eng. 138(2), 021003 (2016)CrossRefGoogle Scholar
  32. 32.
    N.E. Hjerrild, J.A. Scott, R. Amal, R.A. Taylor, Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO2 nanofluids for PV/T applications. Renew. Energy 120, 266–274 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Du, G.H. Tang, T.M. Wang, Exergy analysis of a hybrid PV/T system based on plasmonic nanofluids and silica aerogel glazing. Solar Energy 183, 501–511 (2019)CrossRefGoogle Scholar
  34. 34.
    M. Abdolzadeh, M. Ameri, Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renew. Energy 34(1), 91–96 (2009)CrossRefGoogle Scholar
  35. 35.
    N. Karami, M. Rahimi, Heat transfer enhancement in a PV cell using Boehmite nanofluid. Energy Conver. Manage. 86, 275–285 (2014)CrossRefGoogle Scholar
  36. 36.
    P. Valeh-e-Sheyda, M. Rahimi, E. Karimi, M. Asadi, Application of two-phase flow for cooling of hybrid microchannel PV cells: a comparative study. Energy Conver. Manage. 69, 122–130 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Barrau, M. Omri, D. Chemisana, J. Rosell, M. Ibañez, L. Tadrist, Numerical study of a hybrid jet impingement/micro-channel cooling scheme. Appl. Therm. Eng. 33, 237–245 (2012)CrossRefGoogle Scholar
  38. 38.
    H.A. Hasan, K. Sopian, A.H. Jaaz, A.N. Al-Shamani, Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector. Solar Energy 144, 321–334 (2017)CrossRefGoogle Scholar
  39. 39.
    A. Jaaz, H. Hasan, K. Sopian, A. Kadhum, T. Gaaz, A. Al-Amiery, Outdoor performance analysis of a photovoltaic thermal (PVT) collector with jet impingement and compound parabolic concentrator (CPC). Materials 10(8), 888 (2017)CrossRefGoogle Scholar
  40. 40.
    H.M. Bahaidarah, Experimental performance evaluation and modeling of jet impingement cooling for thermal management of photovoltaics. Solar Energy 135, 605–617 (2016)CrossRefGoogle Scholar
  41. 41.
    S.R. Abdallah, H. Saidani-Scott, O.E. Abdellatif, Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid. Solar Energy 181, 108–115 (2019)CrossRefGoogle Scholar
  42. 42.
    A. Radwan, M. Ahmed, S. Ookawara, Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids. Energy Conver. Manage. 119, 289–303 (2016)CrossRefGoogle Scholar
  43. 43.
    S. Soltani, A. Kasaeian, H. Sarrafha, D. Wen, An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application. Solar Energy 155, 1033–1043 (2017)CrossRefGoogle Scholar
  44. 44.
    M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Conver. Manage. 45(9–10), 1597–1615 (2004)CrossRefGoogle Scholar
  45. 45.
    L. Colla, L. Fedele, S. Mancin, L. Danza, O. Manca, Nano-PCMs for enhanced energy storage and passive cooling applications. Appl. Therm. Eng. 110, 584–589 (2017)CrossRefGoogle Scholar
  46. 46.
    A.S. Abdelrazik, F.A. Al-Sulaiman, R. Saidur, R. Ben-Mansour, A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems. Renew. Sustain. Energy Rev. 95, 110–129 (2018)CrossRefGoogle Scholar
  47. 47.
    R. Stropnik, U. Stritih, Increasing the efficiency of PV panel with the use of PCM. Renew. Energy 97, 671–679 (2016)CrossRefGoogle Scholar
  48. 48.
    K. Karunamurthy, K. Murugumohankumar, S. Suresh, Use of CuO nano-material for the improvement of thermal conductivity and performance of low temperature energy storage system of solar pond. Dig. J. Nanomater. Biostruct. 7(4), 1833–1841 (2012)Google Scholar
  49. 49.
    M. Sardarabadi, M. Passandideh-Fard, M.J. Maghrebi, M. Ghazikhani, Experimental study of using both ZnO/water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Solar Energy Mater. Solar Cells 161, 62–69 (2017)CrossRefGoogle Scholar
  50. 50.
    J.P. Benner, L. Kazmerski, Photovoltaics gaining greater visibility. IEEE Spectr. 36(9), 34–42 (1999)CrossRefGoogle Scholar
  51. 51.
    H.A. Kazem, H.A. Al-Badi, A.S. Al Busaidi, M.T. Chaichan, Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island. Environ. Develop. Sustain. 19(5), 1761–1778 (2017)CrossRefGoogle Scholar
  52. 52.
    E. Kymakis, S. Kalykakis, T.M. Papazoglou, Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Conver. Manage. 50(3), 433–438 (2009)CrossRefGoogle Scholar
  53. 53.
    A. McEvoy, T. Markvart, L. Castañer, T. Markvart, L. Castaner (eds.), Practical Handbook of Photovoltaics: Fundamentals and Applications (Elsevier, Waltham, 2003)Google Scholar
  54. 54.
    D.D. Milosavljević, T.M. Pavlović, D.S. Piršl, Performance analysis of a grid-connected solar PV plant in Niš, republic of Serbia. Renew. Sustain. Energy Rev. 44, 423–435 (2015)CrossRefGoogle Scholar
  55. 55.
    P.J. Braspenning, F. Thuijsman, Artificial Neural Networks: An Introduction to ANN Theory and Practice, vol 931 (Springer Science & Business Media, Heidelberg, 1995)Google Scholar
  56. 56.
    H. Kalani, M. Sardarabadi, M. Passandideh-Fard, Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector. Appl. Therm. Eng. 113, 1170–1177 (2017)CrossRefGoogle Scholar
  57. 57.
    J. Zupan, Introduction to artificial neural network (ANN) methods: what they are and how to use them. Acta Chimica Slovenica 41, 327–327 (1994)Google Scholar
  58. 58.
    A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks: a tutorial. Computer 29(3), 31–44 (1996)CrossRefGoogle Scholar
  59. 59.
    D.W. Patterson, Artificial Neural Networks: Theory and Applications (Prentice Hall PTR, Upper Saddle River, 1998)Google Scholar
  60. 60.
    M.A. Behrang, E. Assareh, A. Ghanbarzadeh, A.R. Noghrehabadi, The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 84(8), 1468–1480 (2010)CrossRefGoogle Scholar
  61. 61.
    A.K. Rai, N.D. Kaushika, B. Singh, N. Agarwal, Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Mater. Solar Cells 95(2), 773–778 (2011)CrossRefGoogle Scholar
  62. 62.
    A.H. Al-Waeli, K. Sopian, H.A. Kazem, J.H. Yousif, M.T. Chaichan, A. Ibrahim, S. Mat, M.H. Ruslan, Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Solar Energy 162, 378–396 (2018)CrossRefGoogle Scholar
  63. 63.
    M.B. Ammar, M. Chaabene, Z. Chtourou, Artificial neural network based control for PV/T panel to track optimum thermal and electrical power. Energy Conver. Manage. 65, 372–380 (2013)CrossRefGoogle Scholar
  64. 64.
    A.H. Alwaeli, K. Sopian, A. Ibrahim, S. Mat, M.H. Ruslan, Nanofluid based photovoltaic thermal (PVT) incorporation in palm oil production process. IJOCAAS 3, 292–294 (2017)Google Scholar
  65. 65.
    A. Fudholi, K. Sopian, M.H. Ruslan, M.A. Alghoul, M.Y. Sulaiman, Review of solar dryers for agricultural and marine products. Renew. Sustain. Energy Rev. 14(1), 1–30 (2010)CrossRefGoogle Scholar
  66. 66.
    E.C. Kern Jr, M.C. Russell, Combined photovoltaic and thermal hybrid collector systems (No. COO-4577-3; CONF-780619-24). Massachusetts Inst. of tech., Lexington, USA. Lincoln Lab (1978)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ali H. A. Al-Waeli
    • 1
  • Hussein A. Kazem
    • 2
  • Miqdam Tariq Chaichan
    • 3
  • Kamaruzzaman Sopian
    • 1
  1. 1.Solar Energy Research InstituteUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of EngineeringSohar UniversitySoharOman
  3. 3.Energy and Renewable Energies Technology CenterUniversity of TechnologyBaghdadIraq

Personalised recommendations