Advertisement

Introduction

  • Ali H. A. Al-Waeli
  • Hussein A. Kazem
  • Miqdam Tariq Chaichan
  • Kamaruzzaman Sopian
Chapter

Abstract

Concepts of solar energy technologies like photovoltaic (PV) modules and solar thermal collectors are critical to understand hybrid photovoltaic-thermal (PV/T) collectors. This chapter introduces the field of solar energy by first addressing their market success and potential. Further illustration on solar energy theory is conducted to explain extraterrestrial radiation; different types of solar irradiance, zenith, azimuth, and hour angles; solar and local standard time; equation of time; etc. The measurement of solar irradiance using pyranometers and pyrheliometers is explained as well. The chronology of photovoltaic efficiency development, pivotal moments in solar photovoltaic, and pivotal moments in solar thermal was discussed as well. The concepts of photovoltaic (PV) systems were explained in detail such as PV cell material, composition, components, equivalent electric circuit, IV and power curves, fill factors, and efficiency. Comprehensive literature review of recent studies in PV to showcase broad range of topics such as optimum tilt angle and MPPT tracking, sizing techniques, cost-effectiveness, effects of environmental conditions, hybrid PV systems and PV applications. Solar thermal systems were also explained in terms of concept, classifications, and flat-plate collectors (FPC) type. The components of flat-plate collectors (FPC), energy balance, and thermal and optical efficiencies were discussed, followed by literature review on design and modeling of FPC as well as advanced concepts and designs of FPC.

Keywords

Photovoltaic (PV) Flat-plate collectors (FPC) Electrical power Power conversion efficiency Thermal power 

References

  1. 1.
    C.D. Keeling, Industrial production of carbon dioxide from fossil fuels and limestone. Tellus 25(2), 174–198 (1973)CrossRefGoogle Scholar
  2. 2.
    M.M. Halmann, M. Steinberg, Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology (CRC Press, Boca Raton, 1998)Google Scholar
  3. 3.
    D.A. Lashof, D.R. Ahuja, Relative contributions of greenhouse gas emissions to global warming. Nature 344(6266), 529 (1990)CrossRefGoogle Scholar
  4. 4.
    Renewables. Global Status Report (REN21). A comprehensive annual overview of the state of renewable energy (2018), Retrieved on January 5th 2019 – from Ren21.net
  5. 5.
    Renewables 2018 (IEA). Market analysis and forecast from 2018 to 2023 (2018), Retrieved on January 5th 2019 – from IEA.org
  6. 6.
    Renewables 2018 (IEA). Solar energy. Retrieved on January 5th 2019 – from IEA.org
  7. 7.
    L. Lakatos, G. Hevessy, J. Kovacs, Advantages and disadvantages of solar energy and wind-power utilization. World Futures 67(6), 395–408 (2011)CrossRefGoogle Scholar
  8. 8.
    G.B. Dalrymple, The age of the earth in the twentieth century: A problem (mostly) solved. Geol. Soc. Lond., Spec. Publ. 190(1), 205–221 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Pidwirny, Surface Area of Our Planet Covered by Oceans and Continents (University of British Columbia, Okanagan, 2006), Retrieved 2019-11-2Google Scholar
  10. 10.
    J.W. Morgan, E. Anders, Chemical composition of earth, Venus, and mercury. Proc. Natl. Acad. Sci. 77(12), 6973–6977 (1980)CrossRefGoogle Scholar
  11. 11.
    M. Emilio, S. Couvidat, R.I. Bush, J.R. Kuhn, I.F. Scholl, Measuring the solar radius from space during the 2012 Venus transit. Astrophys. J. 798(1), 48 (2014)CrossRefGoogle Scholar
  12. 12.
    M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 (2009)CrossRefGoogle Scholar
  13. 13.
    D.B. Guenther, Age of the sun. Astrophys. J. 339, 1156–1159 (1989)CrossRefGoogle Scholar
  14. 14.
    J.E. Braun, J.C. Mitchell, Solar geometry for fixed and tracking surfaces. Sol. Energy 31(5), 439–444 (1983)CrossRefGoogle Scholar
  15. 15.
    F. Vignola, J. Michalsky, T. Stoffel, Solar and Infrared Radiation Measurements (CRC Press, Boca Raton, 2016)CrossRefGoogle Scholar
  16. 16.
    J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (Wiley, Hoboken, 2013)CrossRefGoogle Scholar
  17. 17.
    J.W. Spencer, Fourier series representation of the position of the sun. Search 2(5), 172–172 (1971)Google Scholar
  18. 18.
    Global Solar Atlas (2018), Retrieved on January 9th 2019 – from globalsolaratlas.info
  19. 19.
    K.H. Solangi, M.R. Islam, R. Saidur, N.A. Rahim, H. Fayaz, A review on global solar energy policy. Renew. Sust. Energ. Rev. 15(4), 2149–2163 (2011)CrossRefGoogle Scholar
  20. 20.
    Report IEA PVPS T1–33:2018. Snapchat of Global Photovoltaic Markets 2018, Retrieved on 10th January 2019 from iea-pvps.org
  21. 21.
    A. Goetzberger, J. Knobloch, B. Voss, Crystalline Silicon Solar Cells (Editorial Wiley, Chichester, 1998), p. 1Google Scholar
  22. 22.
    Tonio Buonassisi, 2.627 Fundamentals of Photovoltaics. (Massachusetts Institute of Technology: MIT OpenCourseWare, Fall 2013), https://ocw.mit.edu. License: Creative Commons BY-NC-SA
  23. 23.
    A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering (Wiley, Chichester, 2011)Google Scholar
  24. 24.
    E. Lorenzo, Solar Electricity: Engineering of Photovoltaic Systems (Earthscan/James & James, 1994)Google Scholar
  25. 25.
    D.P. Kaundinya, P. Balachandra, N.H. Ravindranath, Grid-connected versus stand-alone energy systems for decentralized power—A review of literature. Renew. Sust. Energ. Rev. 13(8), 2041–2050 (2009)CrossRefGoogle Scholar
  26. 26.
    B. Marion, J. Adelstein, K.E. Boyle, H. Hayden, B. Hammond, T. Fletcher, B. Canada, D. Narang, A. Kimber, L. Mitchell, G. Rich, Performance parameters for grid-connected PV systems, in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005, (IEEE, Lake Buena Vista, 2005, January), pp. 1601–1606Google Scholar
  27. 27.
    H.A. Kazem, T. Khatib, A.A. Alwaeli, Optimization of photovoltaic modules tilt angle for Oman, in Power Engineering and Optimization Conference (PEOCO), 2013 IEEE 7th International, (IEEE, Langkawi, 2013, June), pp. 703–707Google Scholar
  28. 28.
    F. Belhachat, C. Larbes, A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions. Renew. Sust. Energ. Rev. 92, 513–553 (2018)CrossRefGoogle Scholar
  29. 29.
    M. Kacira, M. Simsek, Y. Babur, S. Demirkol, Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renew. Energy 29(8), 1265–1275 (2004)CrossRefGoogle Scholar
  30. 30.
    A. Mellit, Sizing of photovoltaic systems: A review. Rev. Energ. Renouv. 10(4), 463–472 (2007)Google Scholar
  31. 31.
    B. Herteleer, J. Cappelle, J. Driesen, An autonomous photovoltaic system sizing program for office applications in Africa. The Renew. Energ. & Power Quality Journal 1, 728–733 (2012)Google Scholar
  32. 32.
    I. Zanesco, A. Moehlecke, G.S. Medeiros, T.C. Severo, D. Eberhardt, S.S. Junior, E.A. Zenzen, Experimental evaluation of an analytic method for sizing stand-alone PV systems, in X Congresso Brasileiro de Energia, Rio de (WIP Renewable Energies, München, 2004), p. 530Google Scholar
  33. 33.
    B. Burger, R. Rüther, Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature. Sol. Energy 80(1), 32–45 (2006)CrossRefGoogle Scholar
  34. 34.
    M.S. Adaramola, Techno-economic analysis of a 2.1 kW rooftop photovoltaic-grid-tied system based on actual performance. Energy Convers. Manag. 101, 85–93 (2015)CrossRefGoogle Scholar
  35. 35.
    K. Jeong, T. Hong, C. Ban, C. Koo, H.S. Park, Life cycle economic and environmental assessment for establishing the optimal implementation strategy of rooftop photovoltaic system in military facility. J. Clean. Prod. 104, 315–327 (2015)CrossRefGoogle Scholar
  36. 36.
    M.A. Ramli, A. Hiendro, S. Twaha, Economic analysis of PV/diesel hybrid system with flywheel energy storage. Renew. Energy 78, 398–405 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Saib, A. Gherbi, A. Kaabeche, R. Bayindir, Techno-economic optimization of a grid-connected hybrid energy system considering voltage fluctuation. J. Electr. Eng. Technol. 13(2), 659–668 (2018)Google Scholar
  38. 38.
    P. Rajput, Y.K. Singh, G.N. Tiwari, O.S. Sastry, S. Dubey, K. Pandey, Life cycle assessment of the 3.2 kW cadmium telluride (CdTe) photovoltaic system in composite climate of India. Sol. Energy 159, 415–422 (2018)CrossRefGoogle Scholar
  39. 39.
    V.J. Fesharaki, M. Dehghani, J.J. Fesharaki, H. Tavasoli, The effect of temperature on photovoltaic cell efficiency, in Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation–ETEC, Tehran, Iran, (Civilica, Tehran, 2011, November), pp. 20–21Google Scholar
  40. 40.
    Y. Jiang, J.A.A. Qahouq, M. Orabi, Matlab/Pspice hybrid simulation modeling of solar PV cell/module, in Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, (IEEE, Fort Worth, 2011, March), pp. 1244–1250Google Scholar
  41. 41.
    H. Jiang, L. Lu, K. Sun, Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 45(25), 4299–4304 (2011)CrossRefGoogle Scholar
  42. 42.
    S. Mekhilef, R. Saidur, M. Kamalisarvestani, Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sust. Energ. Rev. 16(5), 2920–2925 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Chandra, S. Agrawal, D.S. Chauhan, Effect of ambient temperature and wind speed on performance ratio of polycrystalline Solar photovoltaic module: An experimental analysis. International Energy Journal 18(2) (2018)Google Scholar
  44. 44.
    S. Dubey, J.N. Sarvaiya, B. Seshadri, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia 33, 311–321 (2013)CrossRefGoogle Scholar
  45. 45.
    A. Shiroudi, R. Rashidi, G.B. Gharehpetian, S.A. Mousavifar, A. Akbari Foroud, Case study: Simulation and optimization of photovoltaic-wind-battery hybrid energy system in Taleghan-Iran using homer software. Journal of Renewable and Sustainable Energy 4(5), 053111 (2012)CrossRefGoogle Scholar
  46. 46.
    H.R. Baghaee, M. Mirsalim, G.B. Gharehpetian, H.A. Talebi, Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy 115, 1022–1041 (2016)CrossRefGoogle Scholar
  47. 47.
    Prévost, C., Hybrid PV-Biomass Power Plant Design for an Indonesian Village (KTH School of Industrial Engineering and Management, Stockholm, 2018)Google Scholar
  48. 48.
    J.M. Bright, S. Killinger, D. Lingfors, N.A. Engerer, Improved satellite-derived PV power nowcasting using real-time power data from reference PV systems. Sol. Energy 168, 118–139 (2018)CrossRefGoogle Scholar
  49. 49.
    A.H. Al-Waeli, A.H. Al-Kabi, A. Al-Mamari, H.A. Kazem, M.T. Chaichan, Evaluation of the economic and environmental aspects of using photovoltaic water pumping system, in 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, (Springer, Singapore, 2017), pp. 715–723CrossRefGoogle Scholar
  50. 50.
    I. Colak, R. Bayindir, A. Aksoz, E. Hossain, S. Sayilgan, Designing a competitive electric vehicle charging station with solar PV and storage. 2015 IEEE International Telecommunications Energy, 2015, pp. 1–6Google Scholar
  51. 51.
    A.K. Tiwari, V.R. Kalamkar, Effects of total head and solar radiation on the performance of solar water pumping system. Renew. Energy 118, 919–927 (2018)CrossRefGoogle Scholar
  52. 52.
    E. Biyik, M. Araz, A. Hepbasli, M. Shahrestani, R. Yao, L. Shao, E. Essah, A.C. Oliveira, T. del Caño, E. Rico, J.L. Lechón, A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. Int. J. 20(3), 833–858 (2017)CrossRefGoogle Scholar
  53. 53.
    solarpowerworldonline. NREL: This parabolic trough 73% efficient By Solar Power Engineering (2010, Sep 3rd), https://www.solarpowerworldonline.com. Accessed 2nd Feb 2019
  54. 54.
    Selvakumar, N., Barshilia, H.C. and Rajam, K.S., Review of Sputter Deposited Mid-to High-Temperature Solar Selective Coatings for Flat Plate/Evacuated Tube Collectors and Solar Thermal Power Generation Applications, (National aerospace laboratories, Bangalore, 2010)Google Scholar
  55. 55.
    S. Jaisankar, J. Ananth, S. Thulasi, S.T. Jayasuthakar, K.N. Sheeba, A comprehensive review on solar water heaters. Renew. Sust. Energ. Rev. 15(6), 3045–3050 (2011)CrossRefGoogle Scholar
  56. 56.
    E. Zambolin, D. Del Col, Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84(8), 1382–1396 (2010)CrossRefGoogle Scholar
  57. 57.
    VREC Solar. What is the best type of solar thermal panel in terms of performance? http://www.vrec.ca, Accessed 23rd Feb 2019
  58. 58.
    M. Fan, S. You, X. Gao, H. Zhang, B. Li, W. Zheng, L. Sun, T. Zhou, A comparative study on the performance of liquid flat-plate solar collector with a new V-corrugated absorber. Energy Convers. Manag. 184, 235–248 (2019)CrossRefGoogle Scholar
  59. 59.
    M.A. Karim, M.N.A. Hawlader, Performance investigation of flat plate, v-corrugated and finned air collectors. Energy 31(4), 452–470 (2006)CrossRefGoogle Scholar
  60. 60.
    A. Alvarez, O. Cabeza, M.C. Muñiz, L.M. Varela, Experimental and numerical investigation of a flat-plate solar collector. Energy 35(9), 3707–3716 (2010)CrossRefGoogle Scholar
  61. 61.
    D. Rojas, J. Beermann, S.A. Klein, D.T. Reindl, Thermal performance testing of flat-plate collectors. Sol. Energy 82(8), 746–757 (2008)CrossRefGoogle Scholar
  62. 62.
    J. Aleksiejuk, A. Chochowski, V. Reshetiuk, Analog model of dynamics of a flat-plate solar collector. Sol. Energy 160, 103–116 (2018)CrossRefGoogle Scholar
  63. 63.
    G. Ampuño, L. Roca, J.D. Gil, M. Berenguel, J.E. Normey-Rico, Apparent delay analysis for a flat-plate solar field model designed for control purposes. Sol. Energy 177, 241–254 (2019)CrossRefGoogle Scholar
  64. 64.
    Z. Tian, B. Perers, S. Furbo, J. Fan, Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series. Energy Convers. Manag. 165, 92–101 (2018)CrossRefGoogle Scholar
  65. 65.
    S. Farahat, F. Sarhaddi, H. Ajam, Exergetic optimization of flat plate solar collectors. Renew. Energy 34(4), 1169–1174 (2009)CrossRefGoogle Scholar
  66. 66.
    F. Jafarkazemi, E. Ahmadifard, Energetic and exergetic evaluation of flat plate solar collectors. Renew. Energy 56, 55–63 (2013)CrossRefGoogle Scholar
  67. 67.
    N.M. Villar, J.C. López, F.D. Muñoz, E.R. García, A.C. Andrés, Numerical 3-D heat flux simulations on flat plate solar collectors. Sol. Energy 83(7), 1086–1092 (2009)CrossRefGoogle Scholar
  68. 68.
    J.P. Chiou, The effect of nonuniform fluid flow distribution on the thermal performance of solar collector. Sol. Energy 29(6), 487–502 (1982)CrossRefGoogle Scholar
  69. 69.
    S.K. Verma, A.K. Tiwari, S. Tiwari, D.S. Chauhan, Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol. Energy 167, 231–241 (2018)CrossRefGoogle Scholar
  70. 70.
    Z.A.K. Baharin, M.H. Mohammad, Experimental investigations on the performance of a single slope solar still coupled with flat plate solar collector under Malaysian conditions. J. Mech. Eng. 5, 16–24 (2018)Google Scholar
  71. 71.
    S.A. Sakhaei, M.S. Valipour, Performance enhancement analysis of the flat plate collectors: A comprehensive review. Renew. Sust. Energ. Rev. 102, 186–204 (2019)CrossRefGoogle Scholar
  72. 72.
    P. Raj, S. Subudhi, A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew. Sust. Energ. Rev. 84, 54–74 (2018)CrossRefGoogle Scholar
  73. 73.
    A.M. Genc, M.A. Ezan, A. Turgut, Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study. Appl. Therm. Eng. 130, 395–407 (2018)CrossRefGoogle Scholar
  74. 74.
    M. Carmona, M. Palacio, Thermal modelling of a flat plate solar collector with latent heat storage validated with experimental data in outdoor conditions. Sol. Energy 177, 620–633 (2019)CrossRefGoogle Scholar
  75. 75.
    M.M.A. Khan, N.I. Ibrahim, I.M. Mahbubul, H.M. Ali, R. Saidur, F.A. Al-Sulaiman, Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review. Sol. Energy 166, 334–350 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ali H. A. Al-Waeli
    • 1
  • Hussein A. Kazem
    • 2
  • Miqdam Tariq Chaichan
    • 3
  • Kamaruzzaman Sopian
    • 1
  1. 1.Solar Energy Research InstituteUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of EngineeringSohar UniversitySoharOman
  3. 3.Energy and Renewable Energies Technology CenterUniversity of TechnologyBaghdadIraq

Personalised recommendations