Advertisement

Molecular Aspects of Thermal Tolerance and Exertional Heat Illness Susceptibility

  • Elaine C. LeeEmail author
  • Jacob S. Bowie
  • Aidan P. Fiol
  • Robert A. Huggins
Chapter

Abstract

Thermoregulation includes many physiological, molecular/cellular, and genetic mechanisms that are highlighted in Chap.  2. Molecular and cellular mechanisms of thermal tolerance (on a whole-body level) and relationships to EHS (exertional heat stroke) susceptibility include pathways associated with immune, endocrine, antioxidant, metabolic, skeletal muscle, and nervous system function. Research clearly implicates pathophysiology arising from LPS (lipopolysaccharide)-induced TLR4 (toll-like receptor 4) activation and subsequent endotoxemia/sepsis-induced inflammation and tissue damage. However, the role is not clearly defined because many have not considered the vast complexity in LPS and TLR-associated positive feedback to inflammation. We present aspects of immune function that complicate the relationship between endotoxemia and EHS pathophysiology that should be studied in future research and make it difficult to associate immune-related genotypes with EHS risk. Additionally, we present molecular targets of pharmacological treatments and individual genotypes associated with susceptibility to heat stress and MH (malignant hyperthermia) to depict novel molecular mechanisms likely associated with pathophysiology and EHS susceptibility.

Keywords

Thermal tolerance Malignant hyperthermia Endotoxemia Ryanodine receptor Calcium signaling TRPV1 Calsequestrin 

References

  1. 1.
    Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, et al. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2015;50(9):986–1000.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Armstrong LE, Lee EC, Armstrong EM. Interactions of gut microbiota, endotoxemia, immune function, and diet in exertional heatstroke. J Sports Med (Hindawi Publ Corp). 2018;2018:5724575.Google Scholar
  3. 3.
    Bouchama A, Knochel P. Heat stroke. N Engl J Med. 2002;346(25):1978–88.CrossRefGoogle Scholar
  4. 4.
    Lim CL, Mackinnon LT. The roles of exercise-induced immune system disturbances in the pathology of heat stroke. Sports Med. 2006;36(1):39–64.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lim C. Heat Sepsis precedes heat toxicity in the pathophysiology of heat stroke—a new paradigm on an ancient disease. Antioxidants. 2018;7(11):149.PubMedCentralCrossRefGoogle Scholar
  6. 6.
    Maron MB, Wagner JA, Horvath SM. Thermoregulatory responses during competitive marathon running. J Appl Physiol. 1977;42(6):909–14.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Byrne C, Lee JK, Chew SA, Lim CL, Tan EY. Continuous thermoregulatory responses to mass-participation distance running in heat. Med Sci Sports Exerc. 2006;38(5):803–10.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sithinamsuwan P, Piyavechviratana K, Kitthaweesin T, Chusri W, Orrawanhanothai P, Wongsa A, et al.; Phramongkutklao Army Hospital Exertional Heatstroke Study Team. Exertional heatstroke: early recognition and outcome with aggressive combined cooling—a 12-year experience. Mil Med 2009;174(5):496–502.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Binkley HM, Beckett J, Casa DJ, Kleiner DM, Plummer PE. National Athletic Trainers’ association position statement: exertional heat illnesses. J Athl Train. 2002;37(3):329–43.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Cleary M. Predisposing risk factors on susceptibility to exertional heat illness: clinical decision-making considerations. J Sport Rehabil. 2007;16(3):204–14.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Navarro CS, Casa DJ, Belval LN, Nye NS. Exertional heat stroke. Curr Sports Med Rep. 2017;16(5):304–5.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hifumi T, Kondo Y, Shimazaki J, Oda Y, Shiraishi S, Wakasugi M, et al. Prognostic significance of disseminated intravascular coagulation in patients with heat stroke in a nationwide registry. J Crit Care. 2018;44:306–11.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hifumi T, Kondo Y, Shimizu K, Miyake Y. Heat stroke. J Intensive Care. 2018;6:30.  https://doi.org/10.1186/s40560-018-0298-4. ReviewCrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Snipe RMJ, Khoo A, Kitic CM, Gibson PR, Costa RJS. The impact of mild heat stress during prolonged running on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profiles. Int J Sports Med. 2018;39:255.  https://doi.org/10.1055/s-0043-122742. [Epub ahead of print].CrossRefGoogle Scholar
  15. 15.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Costrini AM, Pitt HA, Gustafson AB, Uddin DE. Cardiovascular and metabolic manifestations of heat stroke and severe heat exhaustion. Am J Med. 1979;66(2):296–302.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lambert GP. Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the ‘canary in the coal mine’ during exercise-heat stress? Med Sport Sci. 2008;53:61–73.CrossRefGoogle Scholar
  18. 18.
    Leon LR, Helwig BG. Heat stroke: role of the systemic inflammatory response. J Appl Physiol (1985). 2010;109(6):1980–8.CrossRefGoogle Scholar
  19. 19.
    Assimakopoulos SF, Triantos C, Thomopoulos K, Fligou F, Maroulis I, Marangos M, Gogos CA. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection. 2018;46(6):751–60.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Dokladny K, Zuhl MN, Moseley PL. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J Appl Physiol (1985). 2016;120(6):692–701.CrossRefGoogle Scholar
  21. 21.
    Nutsch KM, Hsieh CS. T cell tolerance and immunity to commensal bacteria. Curr Opin Immunol. 2012;24(4):385–91.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hall DM, Baumgardner KR, Oberley TD, Gisolfi CV. Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. Am J Physiol. 1999;276(5):G1195–203.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Mercer DW, Smith GS, Cross JM, Russell DH, Chang L, Cacioppo J. Effects of lipopolysaccharide on intestinal injury: potential role of nitric oxide and lipid peroxidation. J Surg Res. 1996;63(1):185–92.20.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment Pharmacol Ther. 2017;46(3):246–65.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lambert GP, Boylan M, Laventure JP, Bull A, Lanspa S. Effect of aspirin and ibuprofen on GI permeability during exercise. Int J Sports Med. 2007;28(9):722–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Guy J, Vincent G. Nutrition and supplementation considerations to limit endotoxemia when exercising in the heat. Sports (Basel). 2018;6(1):pii: E12.  https://doi.org/10.3390/sports6010012.CrossRefGoogle Scholar
  27. 27.
    Boutagy NE, McMillan RP, Frisard MI, Hulver MW. Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie. 2016;124:11–20.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Viswanathan VK, Hodges K, Hecht G. Enteric infection meets intestinal function:how bacterial pathogens cause diarrhoea. Nat Rev Microbiol. 2009;7(2):110–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Goh J, Behringer M. Exercise alarms the immune system: a HMGB1 perspective. Cytokine. 2018;110:222–5.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Seys SF, Hox V, Van Gerven L, Dilissen E, Marijsse G, Peeters E, et al. Damage-associated molecular pattern and innate cytokine release in the airways of competitive swimmers. Allergy. 2015;70(2):187–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Pfalzgraff A, Weindl G. Intracellular lipopolysaccharide sensing as a potential therapeutic target for sepsis. Trends Pharmacol Sci. 2019;40(3):187–97.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gupta A, Cooper ZA, Tulapurkar ME, Potla R, Maity T, Hasday JD, Singh IS. Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J Biol Chem. 2013;288(4):2756–66.PubMedCrossRefGoogle Scholar
  35. 35.
    Tulapurkar ME, Ramarathnam A, Hasday JD, Singh IS. Bacterial lipopolysaccharide augments febrile-range hyperthermia-induced heat shock protein 70 expression and extracellular release in human THP1 cells. PLoS One. 2015;10(2):e0118010.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cooper ZA, Ghosh A, Gupta A, Maity T, Benjamin IJ, Vogel SN, et al. Febrile-range temperature modifies cytokine gene expression in LPS-stimulated macrophages by differentially modifying NF-{kappa}B recruitment to cytokine gene promoters. Am J Physiol Cell Physiol. 2010;298(1):C171–81.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Cooper ZA, Singh IS, Hasday JD. Febrile range temperature represses TNF-alpha gene expression in LPS-stimulated macrophages by selectively blocking recruitment of Sp1 to the TNF-alpha promoter. Cell Stress Chaperones. 2010;15(5):665–73.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341(6151):1246–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wacker MA, Teghanemt A, Weiss JP, Barker JH. High-affinity caspase-4 binding to LPS presented as high molecular mass aggregates or in outer membrane vesicles. Innate Immun. 2017;23(4):336–44.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–77.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lee EC, Muñoz CX, McDermott BP, Beasley KN, Yamamoto LM, Hom LL, et al. Extracellular and cellular Hsp72 differ as biomarkers in acute exercise/environmental stress and recovery. Scand J Med Sci Sports. 2017;27(1):66–74.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chase MA, Wheeler DS, Lierl KM, Hughes VS, Wong HR, Page K. Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism. J Immunol. 2007;179(9):6318–24.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wheeler DS, Chase MA, Senft AP, Poynter SE, Wong HR, Page K. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res. 2009;10:31.  https://doi.org/10.1186/1465-9921-10-31.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kourtis N, Nikoletopoulou V, Tavernarakis N. Small heat-shock proteins protect from heat stroke-associated neurodegeneration. Nature. 2012;490(7419):213–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Chen ZC, Wu WS, Lin MT, Hsu CC. Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke. BMC Neurosci. 2009;10:111.  https://doi.org/10.1186/1471-2202-10-111.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lee WC, Wen HC, Chang CP, Chen MY, Lin MT. Heat shock protein 72 overexpression protects against hyperthermia, circulatory shock, and cerebral ischemia during heatstroke. J Appl Physiol (1985). 2006;100(6):2073–82.CrossRefGoogle Scholar
  47. 47.
    Hung CH, Chang NC, Cheng BC, Lin MT. Progressive exercise preconditioning protects against circulatory shock during experimental heatstroke. Shock. 2005;23(5):426–33.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Basiricò L, Morera P, Primi V, Lacetera N, Nardone A, Bernabucci U. Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones. 2011;16(4):441–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lockwood B, Julick CR, Montooth KL. Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster. J Exp Biol. 2017;220(Pt 23):4492–501.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sodhi M, Mukesh M, Kishore A, Mishra BP, Kataria RS, Joshi BK. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis). Gene. 2013;527(2):606–15.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Bouchama A, Kwaasi A, Dehbi M, Al Mohanna F, Eldali A, El-Sayed R, et al. Glucocorticoids do not protect against the lethal effects of experimental heatstroke in baboons. Shock. 2007;27(5):578–83.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gathiram P, Wells MT, Brock-Utne JG, Gaffin SL. Prophylactic corticosteroid increases survival in experimental heat stroke in primates. Aviat Space Environ Med. 1988;59(4):352–5.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lim CL, Wilson G, Brown L, Coombes JS, Mackinnon LT. Pre-existing inflammatory state compromises heat tolerance in rats exposed to heat stress. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R186–94.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Liu CC, Chien CH, Lin MT. Glucocorticoids reduce interleukin-1 concentration and result in neuroprotective effects in rat heatstroke. J Physiol. 2000;527(Pt 2):333–43.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wu WS, Chou MT, Chao CM, Chang CK, Lin MT, Chang CP. Melatonin reduces acute lung inflammation, edema, and hemorrhage in heatstroke rats. Acta Pharmacol Sin. 2012;33(6):775–82.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Tian YF, Lin CH, Hsu SF, Lin MT. Melatonin improves outcomes of heatstroke in mice by reducing brain inflammation and oxidative damage and multiple organ dysfunction. Mediators Inflamm. 2013;2013:349280.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Chen SH, Lin MT, Chang CP. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol. 2013;11(2):129–40.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Smith R, Jones N, Martin D, Kipps C. ‘Too much of a coincidence’: identical twins with exertional heatstroke in the same race. BMJ Case Rep. 2016;2016  https://doi.org/10.1136/bcr-2015-212592.
  59. 59.
    Hosokawa Y, Casa DJ, Rosenberg H, Capacchione JF, Sagui E, Riazi S, et al. Round table on malignant hyperthermia in physically active populations: meeting proceedings. J Athl Train. 2017;52(4):377–83.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rosenberg H, Sambuughin N, Riazi S, Dirksen R. Malignant hypertermia susceptibility. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2019.Google Scholar
  61. 61.
    Monnier N, Procaccio V, Stieglitz P, Lunardi J. Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet. 1997;60(6):1316–25.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Heytens K, De Bleecker J, Verbrugghe W, Baets J, Heytens L. Exertional rhabdomyolysis and heat stroke: beware of volatile anesthetic sedation. World J Crit Care Med. 2017;6(1):21–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sagui E, Montigon C, Abriat A, Jouvion A, Duron-Martinaud S, Canini F, et al. Is there a link between exertional heat stroke and susceptibility to malignant hyperthermia? PLoS One. 2015;10(8):e0135496.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Thomas J, Crowhurst T. Exertional heat stroke, rhabdomyolysis and susceptibility to malignant hyperthermia. Intern Med J. 2013;43(9):1035–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Capacchione JF, Muldoon SM. The relationship between exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia. Anesth Analg. 2009;109(4):1065–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Gronert GA, Thompson RL, Onofrio BM. Human malignant hyperthermia: awake episodes and correction by dantrolene. Anesth Analg. 1980;59(5):377–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Lister D, Hall GM, Lucke JN. Letter: malignant hyperthermia: a human and procine stress syndrome? Lancet. 1975;305(7905):519.CrossRefGoogle Scholar
  68. 68.
    Groom L, Muldoon SM, Tang ZZ, Brandom BW, Bayarsaikhan M, Bina S, et al. Identical de novo mutation in the type 1 ryanodine receptor gene associated with fatal, stress-induced malignant hyperthermia in two unrelated families. Anesthesiology. 2011;115(5):938–45.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Muldoon S, Deuster P, Brandom B, Bunger R. Is there a link between malignant hyperthermia and exertional heat illness? Exerc Sport Sci Rev. 2004;32(4):174–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wappler F, Fiege M, Antz M, Schulte am Esch J. Hemodynamic and metabolic alterations in response to graded exercise in a patient susceptible to malignant hyperthermia. Anesthesiology. 2000;92(1):268–72.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Bendahan D, Kozak-Ribbens G, Confort-Gouny S, Ghattas B, Figarella-Branger D, Aubert M, Cozzone PJ. A noninvasive investigation of muscle energetics supports similarities between exertional heat stroke and malignant hyperthermia. Anesth Analg. 2001;93(3):683–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Robinson RL, Monnier N, Wolz W, Jung M, Reis A, Nuernberg G, et al. A genome wide search for susceptibility loci in three European malignant hyperthermia pedigrees. Hum Mol Genet. 1997;6(6):953–61.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Iles DE, Lehmann-Horn F, Scherer SW, Tsui LC, Olde Weghuis D, Suijkerbuijk RF, et al. Localization of the gene encoding the alpha 2/delta-subunits of the L-type voltage-dependent calcium channel to chromosome 7q and analysis of the segregation of flanking markers in malignant hyperthermia susceptible families. Hum Mol Genet. 1994;3(6):969–75.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sudbrak R, Golla A, Hogan K, Powers P, Gregg R, Du Chesne I, et al. Exclusion of malignant hyperthermia susceptibility (MHS) from a putative MHS2 locus on chromosome 17q and of the alpha 1, beta 1, and gamma subunits of the dihydropyridine receptor calcium channel as candidates for the molecular defect. Hum Mol Genet. 1993;2(7):857–62.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Fiszer D, Shaw MA, Fisher NA, Carr IM, Gupta PK, Watkins EJ, et al. Next-generation sequencing of RYR1 and CACNA1S in malignant hyperthermia and exertional heat illness. Anesthesiology. 2015;122(5):1033–46.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Roux-Buisson N, Monnier N, Sagui E, Abriat A, Brosset C, Bendahan D, et al. Identification of variants of the ryanodine receptor type 1 in patients with exertional heat stroke and positive response to the malignant hyperthermia in vitro contracture test. Br J Anaesth. 2016;116(4):566–8.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Protasi F, Paolini C, Dainese M. Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. J Physiol. 2009;587(Pt 13):3095–100.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Li Y, Wang Y, Ma L. An association study of CASQ1 gene polymorphisms and heat stroke. Genomics Proteomics Bioinformatics. 2014;12(3):127–32.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kraeva N, Zvaritch E, Frodis W, Sizova O, Kraev A, MacLennan DH, Riazi S. CASQ1 gene is an unlikely candidate for malignant hyperthermia susceptibility in the North American population. Anesthesiology. 2013;118(2):344–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Levitt RC, Nouri N, Jedlicka AE, McKusick VA, Marks AR, Shutack JG, et al. Evidence for genetic heterogeneity in malignant hyperthermia susceptibility. Genomics. 1991;11(3):543–7.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Olckers A, Meyers DA, Meyers S, Taylor EW, Fletcher JE, Rosenberg H, et al. Adult muscle sodium channel alpha-subunit is a gene candidate for malignant hyperthermia susceptibility. Genomics. 1992;14(3):829–31.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sudbrak R, Procaccio V, Klausnitzer M, Curran JL, Monsieurs K, van Broeckhoven C, et al. Mapping of a further malignant hyperthermia susceptibility locus to chromosome 3q13.1. Am J Hum Genet. 1995;56(3):684–91.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Abeele FV, Lotteau S, Ducreux S, Dubois C, Monnier N, Hanna A, et al. TRPV1 variants impair intracellular Ca2+ signaling and may confer susceptibility to malignant hyperthermia. Genet Med. 2019;21(2):441–50.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Zhu YH, Pei ZM. GSK2193874 treatment at heatstroke onset reduced cell apoptosis in heatstroke mice. Cell Mol Biol (Noisy-le-Grand). 2018;64(7):36–42.CrossRefGoogle Scholar
  85. 85.
    Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC, Alders M, et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation. 2007;116(14):1569–76.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Chui DH, Dover GJ. Sickle cell disease: no longer a single gene disorder. Curr Opin Pediatr. 2001;13(1):22–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Loosemore M, Walsh SB, Morris E, Stewart G, Porter JB, Montgomery H. Sudden exertional death in sickle cell trait. Br J Sports Med. 2012;46(5):312–4.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Stuart MJ, Nagel RL. Sickle-cell disease. Lancet. 2004;364(9442):1343–60.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61–76.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Harmon KG, Drezner JA, Klossner D, Asif IM. Sickle cell trait associated with a RR of death of 37 times in National Collegiate Athletic Association football athletes: a database with 2 million athlete-years as the denominator. Br J Sports Med. 2012;46(5):25–30.CrossRefGoogle Scholar
  91. 91.
    Kark JA, Posey DM, Schumacher HR, Ruehle CJ. Sickle-cell trait as a risk factor for sudden death in physical training. N Engl J Med. 1987;317(13):781–7.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Asplund CA, O’Connor FH. Challenging return to play decisions: heat stroke, exertional rhabdomyolysis, and exertional collapse associated with sickle cell trait. Sports Health. 2016;8(2):117–25.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Eichner ER. Sickle cell considerations in athletes. Clin Sports Med. 2011;30(3):537–49.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Nelson DA, Deuster PA, O’Connor FG, Kurina LM. Sickle cell trait and heat injury among US army soldiers. Am J Epidemiol. 2018;187(3):523–8.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Pretzlaff RK. Death of an adolescent athlete with sickle cell trait caused by exertional heat stroke. Pediatr Crit Care Med. 2002;3(3):308–10.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Singer DE, Byrne C, Chen L, Shao S, Goldsmith J, Niebuhr DW. Risk of exertional heat illnesses associated with sickle cell trait in U.S. military. Mil Med. 2018;183(7–8):e310–7.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Szczepanik ME, Heled Y, Capacchione J, Campbell W, Deuster P, O’Connor FG. Exertional rhabdomyolysis: identification and evaluation of the athlete at risk for recurrence. Curr Sports Med Rep. 2014;13(2):113–9.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Kenney K, Landau ME, Gonzalez RS, Hundertmark J, O’Brien K, Campbell WW. Serum creatine kinase after exercise: drawing the line between physiological response and exertional rhabdomyolysis. Muscle Nerve. 2012;45(3):356–62.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Deschauer M, Wieser T, Zierz S. Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol. 2005;62(1):37–41.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Oda J, Yukioka T, Azuma K, Arai T, Chida J, Kido H. Endogenous genetic risk factor for serious heatstroke: the thermolabile phenotype of carnitine palmitoyltransferase II variant. Acute Med Surg. 2019;6(1):25–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Andresen BS, Olpin S, Poorthuis BJ, Scholte HR, Vianey-Saban C, Wanders R, et al. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet. 1999;64(2):479–94.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Shirao K, Okada S, Tajima G, Tsumura M, Hara K, Yasunaga S, et al. Molecular pathogenesis of a novel mutation, G108D, in short-chain acyl-CoA dehydrogenase identified in subjects with short-chain acyl-CoA dehydrogenase deficiency. Hum Genet. 2010;127(6):619–28.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Matsubara Y, Kraus JP, Yang-Feng TL, Francke U, Rosenberg LE, Tanaka K. Molecular cloning of cDNAs encoding rat and human medium-chain acyl-CoA dehydrogenase and assignment of the gene to human chromosome 1. Proc Natl Acad Sci U S A. 1986;83(17):6543–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Chen YT. Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, Vale D, Childs B, et al., editors. The metabolic & molecular basis of inherited diseases. New York: McGraw-Hill; 2001. p. 1521–52.Google Scholar
  105. 105.
    Mommaerts WF, Illingworth B, Pearson CM, Guillory RJ, Seraydarian K. A functional disorder of muscle associated with the absence of phosphorylase. Proc Natl Acad Sci U S A. 1959;45(6):791–7.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Quinlivan R, Buckley J, James M, Twist A, Ball S, Duno M, et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry. 2010;81(11):1182–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Raben N, Sherman JB. Mutations in muscle phosphofructokinase gene. Hum Mutat. 1995;6(1):1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Maekawa M, Kanda S, Sudo K, Kanno T. Estimation of the gene frequency of lactate dehydrogenase subunit deficiencies. Am J Hum Genet. 1984;36(6):1204–14.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Elaine C. Lee
    • 1
    • 2
    Email author
  • Jacob S. Bowie
    • 1
    • 2
  • Aidan P. Fiol
    • 1
    • 2
  • Robert A. Huggins
    • 1
    • 2
    • 3
  1. 1.Human Performance Laboratory, Department of Kinesiology, University of ConnecticutStorrsUSA
  2. 2.Department of KinesiologyUniversity of ConnecticutStorrsUSA
  3. 3.Korey Stringer Institute, Department of Kinesiology, University of ConnecticutStorrsUSA

Personalised recommendations