Advertisement

Climate Change and Heat Exposure: Impact on Health in Occupational and General Populations

  • Glen P. KennyEmail author
  • Sean R. Notley
  • Andreas D. Flouris
  • Andrew Grundstein
Chapter

Abstract

The projected rise in the frequency and intensity of extreme heat conditions associated with global climate change represent the greatest threat to human health of the twenty-first century. This threat is particularly great for heat-vulnerable populations such as the elderly and those employed in physically demanding occupations. As such, there is an immediate need to define appropriate heat action plans to protect human health. To increase our readiness and ability to protect people during extreme heat events, it is essential that we continue to develop our understanding of the physiological factors that contribute to increased heat vulnerability. This includes the inter- and intraindividual factors that modify physiological strain during extreme heat exposure or during work and/or physical activity in the heat. In this review, emphasis will be directed to the consequences of rising global temperatures on human health, including the cause-and-effect relationships between the thermal environment and the body’s physiological capacity to dissipate heat. Further, we examine how physiological adaptations, behavioral adjustments, and the implementation of heat management and monitoring strategies can mediate one’s susceptibility to heat exposure and work in the heat. Finally, we review current initiatives directed at creating communities and industries resilient to climate change and protecting the general public and workers against the projected rise in temperatures.

Keywords

Aging Chronic disease Climate change Health Heat Occupational health Thermoregulation Work 

References

  1. 1.
    Intergovernmental Panel on Climate Change. Global warming of 1.5oC. 2018. https://www.ipcc.ch/sr15/. Accessed 29 Apr 2019.
  2. 2.
    Lindemann U, Stotz A, Beyer N, et al. Effect of indoor temperature on physical performance in older adults during days with normal temperature and heat waves. Int J Environ Res Public Health. 2017;14(2):186.  https://doi.org/10.3390/ijerph14020186.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Tham KW, Willem HC. Room air temperature affects occupants’ physiology, perceptions and mental alertness. Build Environ. 2010;45:40–4.CrossRefGoogle Scholar
  4. 4.
    Chartered Institution of Building Services Engineers. Environmental design: CIBSE guide A. 7th ed. London, CIBSE; 2006.Google Scholar
  5. 5.
    van Loenhout JA, le Grand A, Duijm F, Greven F, Vinak NM, Hoek G, Zuurbier M. The effect of high indoor temperatures on self-perceived health of elderly persons. Environ Res. 2016;146:27–34.PubMedCrossRefGoogle Scholar
  6. 6.
    van Hoof J, Kort HSM, Hensen JLM, Duijnstee MSH, Rutten PGS. Thermal comfort and the integrated design of homes for older people with dementia. Build Environ. 2010;45:358–70.CrossRefGoogle Scholar
  7. 7.
    van Hoof J, Schellen L, Soebarto V, Wong JKW, Kazak JK. Ten questions concerning thermal comfort and ageing. Build Environ. 2017;120:123–33.CrossRefGoogle Scholar
  8. 8.
    Guo Y, Gasparrini A, Li S, Sera F, Vicedo-Cabrera AM, de Sousa Zanotti Stagliorio Coelho M, et al. Quantifying excess deaths related to heatwaves under climate change scenarios: a multicountry time series modelling study. PLoS Med. 2018;15(7):e1002629.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Noe RS, Jin JO, Wolkin AF. Exposure to natural cold and heat: hypothermia and hyperthermia Medicare claims, United States, 2004–2005. Am J Public Health. 2012;102(4):e11–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kenny GP, Groeller H, McGinn R, Flouris AD. Age, human performance, and physical employment standards. Appl Physiol Nutr Metab. 2016;41(6 Suppl 2):S92–S107.PubMedCrossRefGoogle Scholar
  11. 11.
    Canadian Diabetes Association. An economic tsunami: the cost of diabetes in Canada. Toronto; 2009. https://doi.org/10.1175/BAMS-85-8-1067.CrossRefGoogle Scholar
  12. 12.
    Luber G, McGeehin M. Climate change and extreme heat events. Am J Prev Med. 2008;35(5):429–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Borden KA, Cutter SL. Spatial patterns of natural hazards mortality in the United States. Int J Health Geogr. 2008;7:64.  https://doi.org/10.1186/1476-072X-7-64.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kenny GP, Yardley J, Brown C, Sigal RJ, Jay O. Heat stress in older individuals and patients with common chronic diseases. CMAJ. 2010;182(10):1053–60.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Government of Canada. Canada in a changing climate: sector perspective on impacts and adaptation. Ottawa: Natural Resources Canada; 2014.Google Scholar
  16. 16.
    Kenny GP, Flouris AD. The human thermoregulatory system and its response to thermal stress. In: Wang F, Gao G, editors. Protective clothing: managing thermal stress. Cambridge: Elsevier; 2014. p. 319–65.CrossRefGoogle Scholar
  17. 17.
    Kenny GP, Jay O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol. 2013;3(4):1689–719.PubMedCrossRefGoogle Scholar
  18. 18.
    Kenny GP, Wilson TE, Flouris AD, Fujii N. Heat exhaustion. Handb Clin Neurol. 2018;157:505–29.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    De Blois J, Kjellstrom T, Agewall S, Ezekowitz JA, Armstrong PW, Atar D. The effects of climate change on cardiac health. Cardiology. 2015;131(4):209–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang Y, An S, Xing M, Wan Y, Liu Q. Global warming and heart disease prevention. Eur J Prev Cardiol. 2018;25(12):1342.PubMedCrossRefGoogle Scholar
  21. 21.
    Stearns RL, O’Connor FG, Casa DJ, Kenny GP. Exertional heat stroke. In: Casa DJ, Stearns RL, editors. Emergency management for sport and physical activity. Burlington, MA: Jones and Bartlett Learning; 2015. p. 61–79.Google Scholar
  22. 22.
    Razmjou S. Mental workload in heat: toward a framework for analyses of stress states. Aviat Space Environ Med. 1996;67(6):530–8.PubMedGoogle Scholar
  23. 23.
    Ioannou LG, Tsoutsoubi L, Samoutis G, Bogataj LK, Kenny GP, Nybo L, et al. Time-motion analysis as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers. Temperature (Austin). 2017;4(3):330–40.CrossRefGoogle Scholar
  24. 24.
    Legault G, Clement A, Kenny GP, Hardcastle S, Keller N. Cognitive consequences of sleep deprivation, shiftwork, and heat exposure for underground miners. Appl Ergon. 2017;58:144–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Schmitt LH, Graham HM, White PC. Economic evaluations of the health impacts of weather-related extreme events: a scoping review. Int J Environ Res Public Health. 2016;13(11):1105.  https://doi.org/10.3390/ijerph13111105.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Wondmagegn BY, Xiang J, Williams S, Pisaniello D, Bi P. What do we know about the healthcare costs of extreme heat exposure? A comprehensive literature review. Sci Total Environ. 2019;657:608–18.PubMedCrossRefGoogle Scholar
  27. 27.
    Knowlton K, Rotkin-Ellman M, Geballe L, Max W, Solomon GM. Six climate change-related events in the United States accounted for about $14 billion in lost lives and health costs. Health Aff (Millwood). 2011;30(11):2167–76.CrossRefGoogle Scholar
  28. 28.
    Larrivée C, Sinclair-Desgagné N, Da Silva L, Desjarlais C, Revéret JP. Évaluation des impacts des changements climatiques et de leurs coûts pour le Québec et l’État québécois. Rapport d’étude. Ouranos; 2015. http://www.environnement.gouv.qc.ca/changementSclimatiques/evatuation-impacts-cc-couts-qc-etat.pdf. Accessed 29 Apr 2019.
  29. 29.
    Knowlton K, Rotkin-Ellman M, King G, Margolis HG, Smith D, Solomon G, et al. The 2006 California heat wave: impacts on hospitalizations and emergency department visits. Environ Health Perspect. 2009;117(1):61–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Flouris AD, Dinas PC, Ioannou LG, Nybo L, Havenith G, Kenny GP, Kjellstrom T. Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis. Lancet Planet Health. 2018;2(12):e521–31.PubMedCrossRefGoogle Scholar
  31. 31.
    UK Department for International Development. Impacts of higher temperatures on labour productivity and value for money adaptation: lessons from five DFID priority country case studies. London; 2017. https://doi.org/10.1175/BAMS-85-8-1067.CrossRefGoogle Scholar
  32. 32.
    Burke M, Hsiang SM, Miguel E. Global non-linear effect of temperature on economic production. Nature. 2015;527(7577):235–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Saniotis A, Bi P. Global warming and Australian public health: reasons to be concerned. Aust Health Rev. 2009;33(4):611–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Landis WG, Rohr JR, Moe SJ, Balbus JM, Clements W, Fritz A, et al. Global climate change and contaminants, a call to arms not yet heard? Integr Environ Assess Manag. 2014;10(4):483–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Fouillet A, Rey G, Wagner V, Laaidi K, Empereur-Bissonnet P, Le Tertre A, et al. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int J Epidemiol. 2008;37(2):309–17.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Boyson C, Taylor S, Page L. The national heatwave plan – a brief evaluation of issues for frontline health staff. PLoS Curr. 2014;6. (pii: ecurrents.dis.aa63b5ff4cdaf47f1dc6bf44921afe93).Google Scholar
  37. 37.
    Ebi KL, Teisberg TJ, Kalkstein LS, Robinson L, Weiher RF. Heat watch/warning systems save lives: estimated costs and benefits for Philadelphia 1995–98. Am Meteorol Soc. 2004:1067–73. https://doi.org/10.1175/BAMS-85-8-1067.CrossRefGoogle Scholar
  38. 38.
    Larose J, Boulay P, Sigal RJ, Wright HE, Kenny GP. Age-related decrements in heat dissipation during physical activity occur as early as the age of 40. PLoS One. 2013;8(12):e83148.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Stapleton JM, Poirier MP, Flouris AD, Boulay P, Sigal RJ, Malcolm J, Kenny GP. At what level of heat load are age-related impairments in the ability to dissipate heat evident in females? PLoS One. 2015;10(3):e0119079.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Larose J, Wright HE, Sigal RJ, Boulay P, Hardcastle S, Kenny GP. Do older females store more heat than younger females during exercise in the heat? Med Sci Sports Exerc. 2013;45(12):2265–76.PubMedCrossRefGoogle Scholar
  41. 41.
    Gagnon D, Kenny GP. Sex modulates whole-body sudomotor thermosensitivity during exercise. J Physiol. 2011;589(Pt 24):6205–17.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gagnon D, Kenny GP. Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss. J Appl Physiol. 2012;113(5):746–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Gagnon D, Kenny GP. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J Physiol. 2012;590(Pt 23):5963–73.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Stapleton JM, Poirier MP, Flouris AD, Boulay P, Sigal RJ, Malcolm J, Kenny GP. Aging impairs heat loss, but when does it matter? J Appl Physiol (1985). 2015;118(3):299–309.CrossRefGoogle Scholar
  45. 45.
    Stapleton JM, Larose J, Simpson C, Flouris AD, Sigal RJ, Kenny GP. Do older adults experience greater thermal strain during heat waves? Appl Physiol Nutr Metab. 2014;39(3):292–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Kenny GP, Flouris AD, Dervis S, Friesen BJ, Sigal RJ. Older adults experience greater levels of thermal and cardiovascular strain during extreme heat exposures. Med Sci Sports Exerc. 2015;46(5):S396.Google Scholar
  47. 47.
    Larose J, Boulay P, Wright-Beatty HE, Sigal RJ, Hardcastle S, Kenny GP. Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions. J Appl Physiol (1985). 2014;117(1):69–79.CrossRefGoogle Scholar
  48. 48.
    Kenny GP, Poirier MP, Metsios GS, Boulay P, Dervis S, Friesen BJ, et al. Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults. Temperature (Austin). 2017;4(1):79–88.CrossRefGoogle Scholar
  49. 49.
    Kenny GP, Stapleton JM, Yardley JE, Boulay P, Sigal RJ. Older adults with type 2 diabetes store more heat during exercise. Med Sci Sports Exerc. 2013;45(10):1906–14.CrossRefGoogle Scholar
  50. 50.
    Mora C, Dousset B, Caldwell IR, Powell FE, Geronimo RC, Bielecki CR, et al. Global risk of deadly heat. Nat Clim Chang. 2017;7:501–6.CrossRefGoogle Scholar
  51. 51.
    Epstein Y, Moran DS. Thermal comfort and the heat stress indices. Ind Health. 2006;44(3):388–98.PubMedCrossRefGoogle Scholar
  52. 52.
    Yaglou CP, Minard D. Control of heat casualties at military training centers. AMA Arch Ind Health. 1957;16(4):302–16.PubMedGoogle Scholar
  53. 53.
    Steadman RG. The assessment of sultriness. Part I: a temperature-humidity index based on human physiology and clothing science. J Appl Meteorol. 1979;18:861–73.CrossRefGoogle Scholar
  54. 54.
    Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol. 2012;56(3):481–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Sherwood SC, Huber M. An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci U S A. 2010;107(21):9552–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Perkins SE. A review on the scientific understanding of heatwaves – their measurement, driving mechanisms, and changes at the global scale. Atmos Res. 2015;164-165:242–67.CrossRefGoogle Scholar
  57. 57.
    Della-Marta PM, Luerbacker J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H. Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn. 2007;29(2–3):251–75.CrossRefGoogle Scholar
  58. 58.
    Mishra V, Ganguly AR, Nijssen B, Letenmaier DP. Changes in observed climate extremes in global urban areas. Environ Res Lett. 2015;10:024005.CrossRefGoogle Scholar
  59. 59.
    Russo S, Sillmann J, Sterl A. Humid heat waves at different warming levels. Sci Rep. 2017;7(1):7477.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Matthews T. Humid heat and climate change. Prog Phys Geogr: Earth Environ. 2018;42(3):391–405.CrossRefGoogle Scholar
  61. 61.
    Gaffen DJ, Ross RJ. Increased summertime heat stress in the U.S. Nature. 1998;396:529–30.CrossRefGoogle Scholar
  62. 62.
    Grundstein A, Dowd J. Trends in extreme apparent temperatures over the United States, 1949–2010. J Appl Meteorol Climatol. 2011;50(8):1650–3.CrossRefGoogle Scholar
  63. 63.
    Schoof JT, Ford TW, Pryor SC. Recent changes in U.S. regional heat wave characteristics in observations and reanalysis. J Appl Meteorol Climatol. 2017;56:2621–36.CrossRefGoogle Scholar
  64. 64.
    Jacobs SJ, Pezza AB, Barras V. An analysis of the meteorological variables leading to apparent temperature in Australia: present climate, trends, and global warming simulations. Glob Planet Change. 2013;107:145–56.CrossRefGoogle Scholar
  65. 65.
    Desai MS, Dhorde AG. Trends in thermal discomfort indices over western coastal cities of India. Theor Appl Climatol. 2018;131(3–4):1305–21.CrossRefGoogle Scholar
  66. 66.
    Willet KM, Jones PD, Gillett NP, Thorne PW. Recent changes in surface humidity: development of the HadCRUH Dataset. J Clim. 2008;21:5364–83.CrossRefGoogle Scholar
  67. 67.
    Knutson TR, Ploshay JJ. Detection of anthropogenic influence on a summertime heat stress index. Clim Chang. 2016;148:25–39.CrossRefGoogle Scholar
  68. 68.
    Lee D, Brenner T. Perceived temperature in the course of climate change: an analysis of global heat index from 1979 to 2013. Earth Syst Sci Data. 2015;7:193–202.CrossRefGoogle Scholar
  69. 69.
    Hayhoe K, Edmonds J, Kopp RE, Le Grand A, Sanderson BM, Wehner MF. Climate models, scenarios, and projections. Washington, DC: U.S. Global Change Research Program; 2017.Google Scholar
  70. 70.
    Meehl GA, Tebaldi C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 2004;305(5686):994–7.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cowan T, Purich A, Perkins S, Peza A, Boschat G, Sadler K. More frequent, longer, and hotter heat waves for Australia in the twenty-first century. J Clim. 2014;27(15):5851–71.CrossRefGoogle Scholar
  72. 72.
    Wenger CB. Heat of evaporation of sweat: thermodynamic considerations. J Appl Physiol. 1972;32(4):456–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Gagnon D, Jay O, Kenny GP. The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. J Physiol. 2013;591(11):2925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Sawka MN, Young AJ, Latzka WA, Neufer PD, Quigley MD, Pandolf KB. Human tolerance to heat strain during exercise: influence of hydration. J Appl Physiol (1985). 1992;73(1):368–75.CrossRefGoogle Scholar
  75. 75.
    Hensel H. Thermoreceptors. Annu Rev Physiol. 1974;36:233–49.PubMedCrossRefGoogle Scholar
  76. 76.
    Jessen C. Thermal afferents in the control of body temperature. Pharmacol Ther. 1985;28(1):107–34.PubMedCrossRefGoogle Scholar
  77. 77.
    Pierau FK, Wurster RD. Primary afferent input from cutaneous thermoreceptors. Fed Proc. 1981;40(14):2819–24.PubMedGoogle Scholar
  78. 78.
    Boulant JA, Dean JB. Temperature receptors in the central nervous system. Annu Rev Physiol. 1986;48:639–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):52–64.CrossRefGoogle Scholar
  80. 80.
    Gisolfi CV, Wenger CB. Temperature regulation during exercise: old concepts, new ideas. Exerc Sport Sci Rev. 1984;12:339–72.PubMedCrossRefGoogle Scholar
  81. 81.
    Belding HS, Kamon E. Evaporative coefficients for prediction of safe limits in prolonged exposures to work under hot conditions. Fed Proc. 1973;32(5):1598–601.PubMedGoogle Scholar
  82. 82.
    Bouchama A, Knochel JP. Heat stroke. N Engl J Med. 2002;346(25):1978–88.CrossRefGoogle Scholar
  83. 83.
    Meade RD, Lauzon M, Poirier MP, Flouris AD, Kenny GP. An evaluation of the physiological strain experienced by electrical utility workers in North America. J Occup Environ Hyg. 2015;12(10):708–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Meade RD, D’Souza AW, Krishen L, Kenny GP. The physiological strain incurred during electrical utilities work over consecutive work shifts in hot environments: a case report. J Occup Environ Hyg. 2017;14(12):986–94.CrossRefGoogle Scholar
  85. 85.
    Poulianiti KP, Havenith G, Flouris AD. Metabolic energy cost of workers in agriculture, construction, manufacturing, tourism, and transportation industries. Ind Health. 2018;57(3):283–305.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Soule RG, Goldman RF. Energy cost of loads carried on the head, hands, or feet. J Appl Physiol. 1969;27(5):687–90.PubMedCrossRefGoogle Scholar
  87. 87.
    Dorman LE, Havenith G. The effects of protective clothing on energy consumption during different activities. Eur J Appl Physiol. 2009;105(3):463–70.PubMedCrossRefGoogle Scholar
  88. 88.
    Taylor NA, Lewis MC, Notley SR, Peoples GE. A fractionation of the physiological burden of the personal protective equipment worn by firefighters. Eur J Appl Physiol. 2012;112(8):2913–21.PubMedCrossRefGoogle Scholar
  89. 89.
    Montain SJ, Sawka MN, Cadarette BS, Quigley MD, McKay JM. Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate. J Appl Physiol (1985). 1994;77(1):216–22.CrossRefGoogle Scholar
  90. 90.
    Havenith G. Heat balance when wearing protective clothing. Ann Occup Hyg. 1999;43(5):289–96.PubMedCrossRefGoogle Scholar
  91. 91.
    Muir IH, Bishop PA, Kozusko J. Micro-environment changes inside impermeable protective clothing during a continuous work exposure. Ergonomics. 2001;44(11):953–61.PubMedCrossRefGoogle Scholar
  92. 92.
    Nielsen B, Rowell LB, Bonde-Petersen F. Cardiovascular responses to heat stress and blood volume displacements during exercise in man. Eur J Appl Physiol Occup Physiol. 1984;52(4):370–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Brengelmann GL. Circulatory adjustments to exercise and heat stress. Annu Rev Physiol. 1983;45:191–212.CrossRefGoogle Scholar
  94. 94.
    Rowell LB, Brengelmann GL, Blackmon JR, Twiss RD, Kusumi F. Splanchnic blood flow and metabolism in heat-stressed man. J Appl Physiol. 1968;24(4):475–84.CrossRefGoogle Scholar
  95. 95.
    Senay LC Jr. Effects of exercise in the heat on body fluid distribution. Med Sci Sports. 1979;11(1):42–8.Google Scholar
  96. 96.
    Sawka MN, Toner MM, Francesconi RP, Pandolf KB. Hypohydration and exercise: effects of heat acclimation, gender, and environment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(4):1147–53.Google Scholar
  97. 97.
    Gisolfi CV, Copping JR. Thermal effects of prolonged treadmill exercise in the heat. Med Sci Sports. 1974;6(2):108–13.Google Scholar
  98. 98.
    Buono MJ, Wall AJ. Effect of hypohydration on core temperature during exercise in temperate and hot environments. Pflugers Arch. 2000;440(3):476–80.CrossRefGoogle Scholar
  99. 99.
    Notley SR, Flouris AD, Kenny GP. Occupational heat stress management: does one size fit all? Am J Ind Med. 2019;  https://doi.org/10.1002/ajim.22961.PubMedCrossRefGoogle Scholar
  100. 100.
    Lamarche DT, Notley SR, Poirier MP, Kenny GP. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent. Exp Physiol. 2018;103(3):312–7.CrossRefGoogle Scholar
  101. 101.
    Lamarche DT, Notley SR, Louie JC, Poirier MP, Kenny GP. Fitness-related differences in the rate of whole-body evaporative heat loss in exercising men are heat-load dependent. Exp Physiol. 2018;103(1):101–10.PubMedCrossRefGoogle Scholar
  102. 102.
    Notley SR, Poirier MP, Hardcastle SG, Flouris AD, Boulay P, Sigal RJ, Kenny GP. Aging impairs whole-body heat loss in women under both dry and humid heat stress. Med Sci Sports Exerc. 2017;49(11):2324–32.PubMedCrossRefGoogle Scholar
  103. 103.
    Larose J, Wright HE, Stapleton J, Sigal RJ, Boulay P, Hardcastle S, Kenny GP. Whole body heat loss is reduced in older males during short bouts of intermittent exercise. Am J Physiol Regul Integr Comp Physiol. 2013;305(6):R619–29.CrossRefGoogle Scholar
  104. 104.
    Kenny GP, Gagnon D, Dorman LE, Hardcastle SG, Jay O. Heat balance and cumulative heat storage during exercise performed in the heat in physically active younger and middle-aged men. Eur J Appl Physiol. 2010;109(1):81–92.PubMedCrossRefGoogle Scholar
  105. 105.
    Taylor NA. Human heat adaptation. Compr Physiol. 2014;4(1):325–65.CrossRefGoogle Scholar
  106. 106.
    Poirier MP, Gagnon D, Kenny GP. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation. Appl Physiol Nutr Metab. 2016;41(8):816–24.PubMedCrossRefGoogle Scholar
  107. 107.
    Poirier MP, Gagnon D, Friesen BJ, Hardcastle SG, Kenny GP. Whole-body heat exchange during heat acclimation and its decay. Med Sci Sports Exerc. 2015;47(2):390–400.PubMedCrossRefGoogle Scholar
  108. 108.
    Meade RD, Notley SR, D’Souza AW, Dervis S, Boulay P, Sigal RJ, Kenny GP. Interactive effects of age and hydration state on human thermoregulatory function during exercise in hot-dry conditions. Acta Physiol (Oxf). 2019;226(1):e13226.CrossRefGoogle Scholar
  109. 109.
    Notley SR, Meade RD, D’Souza AW, Friesen BJ, Kenny GP. Heat loss is impaired in older men on the day after prolonged work in the heat. Med Sci Sports Exerc. 2018;50(9):1859–67.PubMedCrossRefGoogle Scholar
  110. 110.
    Notley SR, Meade RD, D’Souza AW, McGarr GW, Kenny GP. Cumulative effects of successive workdays in the heat on thermoregulatory function in the aging worker. Temperature (Austin). 2018;5(4):293–5.CrossRefGoogle Scholar
  111. 111.
    Dewasmes G, Bothorel B, Hoeft A, Candas V. Regulation of local sweating in sleep-deprived exercising humans. Eur J Appl Physiol Occup Physiol. 1993;66(6):542–6.CrossRefGoogle Scholar
  112. 112.
    Yoda T, Crawshaw LI, Nakamura M, Saito K, Konishi A, Nagashima K, et al. Effects of alcohol on thermoregulation during mild heat exposure in humans. Alcohol. 2005;36(3):195–200.CrossRefGoogle Scholar
  113. 113.
    Freund BJ, Joyner MJ, Jilka SM, Kalis J, Nittolo JM, Taylor JA, et al. Thermoregulation during prolonged exercise in heat: alterations with beta-adrenergic blockade. J Appl Physiol (1985). 1987;63(3):930–6.CrossRefGoogle Scholar
  114. 114.
    Persson PB, Persson AB. Water is life. Acta Physiol (Oxf). 2018;224(2):e13173.CrossRefGoogle Scholar
  115. 115.
    Yu W, Mengersen K, Wang X, Ye X, Guo Y, Pan X, Tong S. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence. Int J Biometeorol. 2012;56(4):569–81.PubMedCrossRefGoogle Scholar
  116. 116.
    Rey G, Jougla E, Fouillet A, Pavillon G, Bessemoulin P, Frayssinet P, et al. The impact of major heat waves on all-cause and cause-specific mortality in France from 1971 to 2003. Int Arch Occup Environ Health. 2007;80(7):615–26.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Rey G, Fouillet A, Bessemoulin P, Frayssinet P, Dufour A, Jougla E, Hémon D. Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality. Eur J Epidemiol. 2009;24(9):495–502.PubMedCrossRefGoogle Scholar
  118. 118.
    Fouillet A, Rey G, Laurent F, Pavillon G, Bellec S, Guihenneuc-Jouyaux C, et al. Excess mortality related to the August 2003 heat wave in France. Int Arch Occup Environ Health. 2006;80(1):16–24.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Yardley J, Sigal RJ, Kenny GP. Heat health planning: the importance of social and community factors. Glob Environ Chang. 2011;21:670–9.CrossRefGoogle Scholar
  120. 120.
    Ishigami A, Hajat S, Kovats RS, Bisanti L, Rognoni M, Russo A, Paldy A. An ecological time-series study of heat-related mortality in three European cities. Environ Health. 2008;7(1):5.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Naughton MP, Henderson A, Mirabelli MC, Kaiser R, Wilhelm JL, Kieszak SM, et al. Heat-related mortality during a 1999 heat wave in Chicago. Am J Prev Med. 2002;22(4):221–7.CrossRefGoogle Scholar
  122. 122.
    Kilbourne EM, Choi K, Jones TS, Thacker SB. Risk factors for heatstroke. A case-control study. JAMA. 1982;247(24):3332–6.CrossRefGoogle Scholar
  123. 123.
    Semenza JC, Rubin CH, Falter KH, Selanikio JD, Flanders WD, Howe HL, Wilhelm JL. Heat-related deaths during the July 1995 heat wave in Chicago. N Engl J Med. 1996;335(2):84–90.PubMedCrossRefGoogle Scholar
  124. 124.
    Rey G, Jougla E, Fouillet A, Hemon D. Ecological association between a deprivation index and mortality in France over the period 1997–2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death. BMC Public Health. 2009;9:33.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Klinenberg E. Heat wave: a social autopsy of disaster in Chicago. Chicago: Chicago University Press; 2002.CrossRefGoogle Scholar
  126. 126.
    Robine JM, Cheung SL, Le Roy S, Van Oyen H, Griffiths C, Michel JP, Herrmann FR. Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol. 2008;331(2):171–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera R. The hot summer of 2010: redrawing the temperature record map of Europe. Science. 2011;332(6026):220–4.PubMedCrossRefGoogle Scholar
  128. 128.
    Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S. Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect. 2012;120(1):19–28.PubMedCrossRefGoogle Scholar
  129. 129.
    Smargiassi A, Goldberg MS, Plante C, Fournier M, Baudouin Y, Kosatsky T. Variation of daily warm season mortality as a function of micro-urban heat islands. J Epidemiol Community Health. 2009;63(8):659–64.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA. Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol. 2002;155(1):80–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology. 2009;20(2):205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lin S, Luo M, Walker RJ, Liu X, Hwang SA, Chinery R. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology. 2009;20(5):738–46.PubMedCrossRefGoogle Scholar
  133. 133.
    Ng CF, Ueda K, Ono M, Nitta H, Takami A. Characterizing the effect of summer temperature on heatstroke-related emergency ambulance dispatches in the Kanto area of Japan. Int J Biometeorol. 2014;58(5):941–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Guirguis K, Gershunov A, Tardy A, Basu R. The impact of recent heat waves on human health in California. J Appl Meteorol Climatol. 2012;53(1):3–19.CrossRefGoogle Scholar
  135. 135.
    Hajat S, Kovats RS, Atkinson RW, Haines A. Impact of hot temperatures on death in London: a time series approach. J Epidemiol Community Health. 2002;56(5):367–72.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Sheridan SC, Lin S. Assessing variability in the impacts of heat on health outcomes in New York City over time, season, and heat-wave duration. EcoHealth. 2014;11(4):512–25.PubMedCrossRefGoogle Scholar
  137. 137.
    Davis RE, Knappenberger PC, Michaels PJ, Novicoff WM. Changing heat-related mortality in the United States. Environ Health Perspect. 2003;111(14):1712–8.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kovats RS, Hajat S, Wilkinson P. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. Occup Environ Med. 2004;61(11):893–8.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    McGinn R, Poirier MP, Louie JC, Sigal RJ, Boulay P, Flouris AD, Kenny GP. Increasing age is a major risk factor for susceptibility to heat stress during physical activity. Appl Physiol Nutr Metab. 2017;42(11):1232–5.PubMedCrossRefGoogle Scholar
  140. 140.
    Flouris AD, McGinn R, Poirier MP, Louie JC, Ioannou LG, Tsoutsoubi L, et al. Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31–70 years. Temperature (Austin). 2018;5(1):86–99.CrossRefGoogle Scholar
  141. 141.
    Ellis FP. Mortality from heat illness and heat-aggravated illness in the United States. Environ Res. 1972;5(1):1–58.PubMedCrossRefGoogle Scholar
  142. 142.
    Semenza JC, McCullough JE, Flanders WD, McGeehin MA, Lumpkin JR. Excess hospital admissions during the July 1995 heat wave in Chicago. Am J Prev Med. 1999;16(4):269–77.PubMedCrossRefGoogle Scholar
  143. 143.
    Bar-Or O, Lundegren HM, Buskirk ER. Heat tolerance of exercising obese and lean women. J Appl Physiol. 1969;26(4):403–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Havenith G, Coenen JM, Kistemaker L, Kenney WL. Relevance of individual characteristics for human heat stress response is dependent on exercise intensity and climate type. Eur J Appl Physiol Occup Physiol. 1998;77(3):231–41.PubMedCrossRefGoogle Scholar
  145. 145.
    Conti S, Meli P, Minelli G, Solimini R, Toccaceli V, Vichi M, Beltrano C, et al. Epidemiologic study of mortality during the Summer 2003 heat wave in Italy. Environ Res. 2005;98(3):390–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Vandentorren S, Bretin P, Zeghnoun A, Mandereau-Bruno L, Croisier A, Cochet C, et al. August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur J Pub Health. 2006;16(6):583–91.CrossRefGoogle Scholar
  147. 147.
    Henschel A. Obesity as an occupational hazard. Can J Public Health. 1967;58(11):491–3.PubMedGoogle Scholar
  148. 148.
    Yardley JE, Stapleton JM, Sigal RJ, Kenny GP. Do heat events pose a greater health risk for individuals with type 2 diabetes? Diabetes Technol Ther. 2013;15(6):520–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Hoffmann B, Hertel S, Boes T, Weiland D, Jockel KH. Increased cause-specific mortality associated with 2003 heatwave in Essen, Germany. J Toxicol Environ Health A. 2008;71:759–65.PubMedCrossRefGoogle Scholar
  150. 150.
    Dematte JE, O’Mara K, Buescher J, Whitney CG, Forsythe S, McNamee T, et al. Near-fatal heat stroke during the 1995 heat wave in Chicago. Ann Intern Med. 1998;129(3):173–81.CrossRefGoogle Scholar
  151. 151.
    American Academy of Pediatrics Committee on Environmental Health. American Academy of Pediatrics Committee on Environmental Health. In: Etzel RA, editor. Pediatric environmental health. 2nd ed. Elk Grove Village: American Academy of Pediatrics; 2003.Google Scholar
  152. 152.
    Falk B. Effects of thermal stress during rest and exercise in the paediatric population. Sports Med. 1998;25(4):221–40.PubMedCrossRefGoogle Scholar
  153. 153.
    Basu R, Ostro BD. A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California. Am J Epidemiol. 2008;168(6):632–7.PubMedCrossRefGoogle Scholar
  154. 154.
    O’Neill MS, Hajat S, Zanobetti A, Ramirez-Aguilar M, Schwartz J. Impact of control for air pollution and respiratory epidemics on the estimated associations of temperature and daily mortality. Int J Biometeorol. 2005;50(2):121–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Shea KM, American Academy of Pediatrics Committee on Environmental Health. Global climate change and children’s health. Pediatrics. 2007;120(5):e1359–67.PubMedCrossRefGoogle Scholar
  156. 156.
    Diaz J, Linares C, Garcia-Herrera R, Lopez C, Trigo R. Impact of temperature and air pollution on the mortality of children in Madrid. J Occup Environ Med. 2004;46(8):768–74.PubMedCrossRefGoogle Scholar
  157. 157.
    Hashizume M, Wagatsuma Y, Hayashi T, Saha SK, Streatfield K, Yunus M. The effect of temperature on mortality in rural Bangladesh–a population-based time-series study. Int J Epidemiol. 2009;38(6):1689–97.PubMedCrossRefGoogle Scholar
  158. 158.
    Bartlett S. Climate change and urban children: impacts and implications for adaptation in low- and middle-income countries. Environ Urbanization. 2008;20(2):501–19.CrossRefGoogle Scholar
  159. 159.
    Inbar O, Bar-Or O, Dotan R, Gutin B. Conditioning versus exercise in heat as methods for acclimatizing 8- to 10-yr-old boys to dry heat. J Appl Physiol Respir Environ Exerc Physiol. 1981;50(2):406–11.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Drinkwater BL, Kupprat IC, Denton JE, Crist JL, Horvath SM. Response of prepubertal girls and college women to work in the heat. J Appl Physiol Respir Environ Exerc Physiol. 1977;43(6):1046–53.PubMedPubMedCentralGoogle Scholar
  161. 161.
    Haymes EM, McCormick RJ, Buskirk ER. Heat tolerance of exercising lean and obese prepubertal boys. J Appl Physiol. 1975;39(3):457–61.PubMedCrossRefGoogle Scholar
  162. 162.
    Leppaluoto J. Human thermoregulation in sauna. Ann Clin Res. 1988;20(4):2403.Google Scholar
  163. 163.
    Wagner JA, Robinson S, Tzankoff SP, Marino RP. Heat tolerance and acclimatization to work in the heat in relation to age. J Appl Physiol. 1972;33(5):616–22.PubMedCrossRefGoogle Scholar
  164. 164.
    Falk B, Bar-Or O, Calvert R, MacDougall JD. Sweat gland response to exercise in the heat among pre-, mid-, and late-pubertal boys. Med Sci Sports Exerc. 1992;24(3):313–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Falk B, Bar-Or O, MacDougall JD. Thermoregulatory responses of pre-, mid-, and late-pubertal boys to exercise in dry heat. Med Sci Sports Exerc. 1992;24(6):688–94.PubMedCrossRefGoogle Scholar
  166. 166.
    Falk B, Bar-Or O, MacDougall JD, Goldsmith CH, McGillis L. Longitudinal analysis of the sweating response of pre-, mid-, and late-pubertal boys during exercise in the heat. Am J Hum Biol. 1992;4(4):527–35.PubMedCrossRefGoogle Scholar
  167. 167.
    Bar-Or O. Climate and the exercising child – a review. Int J Sports Med. 1980;1:53–65.CrossRefGoogle Scholar
  168. 168.
    O’Neill MS, Zanobetti A, Schwartz J. Modifiers of the temperature and mortality association in seven US cities. Am J Epidemiol. 2003;157(12):1074–82.PubMedCrossRefGoogle Scholar
  169. 169.
    Schwartz J. Who is sensitive to extremes of temperature?: A case-only analysis. Epidemiology. 2005;16(1):67–72.PubMedCrossRefGoogle Scholar
  170. 170.
    Schuman SH. Patterns of urban heat-wave deaths and implications for prevention: data from New York and St. Louis during July, 1966. Environ Res. 1972;5(1):59–75.PubMedCrossRefGoogle Scholar
  171. 171.
    Medina-Ramon M, Zanobetti A, Cavanagh DP, Schwartz J. Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. Environ Health Perspect. 2006;114(9):1331–6.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Alter DA, Iron K, Austin PC, Naylor CD. Influence of education and income on atherogenic risk factor profiles among patients hospitalized with acute myocardial infarction. Can J Cardiol. 2004;20(12):1219–28.PubMedGoogle Scholar
  173. 173.
    Ward H, Tarasuk V, Mendelson R. Socioeconomic patterns of obesity in Canada: modeling the role of health behaviour. Appl Physiol Nutr Metab. 2007;32(2):206–16.PubMedCrossRefGoogle Scholar
  174. 174.
    Oliver LN, Hayes MV. Neighbourhood socio-economic status and the prevalence of overweight Canadian children and youth. Can J Public Health. 2005;96(6):415–20.PubMedCrossRefGoogle Scholar
  175. 175.
    Hall KD, Stephen AM, Reeder BA, Muhajarine N, Lasiuk G. Diet, obesity and education in three age groups of Saskatchewan women. Can J Diet Pract Res. 2003;64(4):181–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Willms JD, Tremblay MS, Katzmarzyk PT. Geographic and demographic variation in the prevalence of overweight Canadian children. Obes Res. 2003;11(5):668–73.PubMedCrossRefGoogle Scholar
  177. 177.
    Green C, Hoppa RD, Young TK, Blanchard JF. Geographic analysis of diabetes prevalence in an urban area. Soc Sci Med. 2003;57(3):551–60.PubMedCrossRefGoogle Scholar
  178. 178.
    Tanuseputro P, Manuel DG, Leung M, Nguyen K, Johansen H. Risk factors for cardiovascular disease in Canada. Can J Cardiol. 2003;19(11):1249–59.PubMedGoogle Scholar
  179. 179.
    Butler GP, Orpana HM, Wiens AJ. By your own two feet: factors associated with active transportation in Canada. Can J Public Health. 2007;98(4):259–64.PubMedCrossRefGoogle Scholar
  180. 180.
    Mo F, Turner M, Krewski D, Mo FD. Physical inactivity and socioeconomic status in Canadian adolescents. Int J Adolesc Med Health. 2005;17(1):49–56.PubMedCrossRefGoogle Scholar
  181. 181.
    Choiniere R, Lafontaine P, Edwards AC. Distribution of cardiovascular disease risk factors by socioeconomic status among Canadian adults. CMAJ. 2000;162(9 Suppl):S13–24.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Hemingway H, Shipley M, Macfarlane P, Marmot M. Impact of socioeconomic status on coronary mortality in people with symptoms, electrocardiographic abnormalities, both or neither: the original Whitehall study 25 year follow up. J Epidemiol Community Health. 2000;54(7):510–6.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Mardby AC, Akerlind I, Jorgensen T. Beliefs about medicines and self-reported adherence among pharmacy clients. Patient Educ Couns. 2007;69(1–3):158–64.PubMedCrossRefGoogle Scholar
  184. 184.
    Kulkarni SP, Alexander KP, Lytle B, Heiss G, Peterson ED. Long-term adherence with cardiovascular drug regimens. Am Heart J. 2006;151(1):185–91.PubMedCrossRefGoogle Scholar
  185. 185.
    Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol. 2001;11(3):231–52.PubMedCrossRefGoogle Scholar
  186. 186.
    Leech JA, Nelson WC, Burnett RT, Aaron S, Raizenne ME. It’s about time: a comparison of Canadian and American time – activity patterns. J Expo Anal Environ Epidemiol. 2002;12:427–32.PubMedCrossRefGoogle Scholar
  187. 187.
    Bouchama A, Dehbi M, Mohamed G, Matthies F, Shoukri M, Menne B. Prognostic factors in heat wave related deaths: a meta-analysis. Arch Intern Med. 2007;167(20):2170–6.PubMedCrossRefGoogle Scholar
  188. 188.
    Foroni M, Salvioli G, Rielli R, Goldoni CA, Orlandi G, Zauli Sajani S, et al. A retrospective study on heat-related mortality in an elderly population during the 2003 heat wave in Modena, Italy: the Argento Project. J Gerontol A Biol Sci Med Sci. 2007;62(6):647–51.PubMedCrossRefGoogle Scholar
  189. 189.
    Hajat S, Kovats RS, Lachowycz K. Heat-related and cold-related deaths in England and Wales: who is at risk? Occup Environ Med. 2007;64(2):93–100.PubMedCrossRefGoogle Scholar
  190. 190.
    Kramarow EA. The elderly who live alone in the United States: historical perspectives on household change. Demography. 1995;32(3):335–52.PubMedCrossRefGoogle Scholar
  191. 191.
    Gronlund CJ. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: a review. Curr Epidemiol Rep. 2014;1(3):165–73.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Kravchenko J, Abernethy AP, Fawzy M, Lyerly HK. Minimization of heatwave morbidity and mortality. Am J Prev Med. 2013;44(3):274–82.PubMedCrossRefGoogle Scholar
  193. 193.
    Madrigano J, Mittleman MA, Baccarelli A, Goldberg R, Melly S, von Klot S, Schwartz J. Temperature, myocardial infarction, and mortality: effect modification by individual- and area-level characteristics. Epidemiology. 2013;24(3):439–46.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Pillai SK, Noe RS, Murphy MW, Vaidyanathan A, Young R, Kieszak S, et al. Heat illness: predictors of hospital admissions among emergency department visits—Georgia, 2002–2008. J Community Health. 2014;39(1):90–8.PubMedCrossRefGoogle Scholar
  195. 195.
    McMichael AJ, Wilkinson P, Kovats RS, Pattenden S, Hajat S, Armstrong B, et al. International study of temperature, heat and urban mortality: the “ISOTHURM” project. Int J Epidemiol. 2008;37:1121–31.PubMedCrossRefGoogle Scholar
  196. 196.
    Gabriel KM, Endlicher WR. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ Pollut. 2011;159(8–9):204450.Google Scholar
  197. 197.
    Hondula DM, Davis RE, Leisten MJ, Saha MV, Veazey LM, Wegner CR. Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983 to 2008: a case-series analysis. Environ Health. 2012;11:16.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Laaidi K, Zeghnoun A, Dousset B, Bretin P, Vandentorren S, Giraudet E, Beaudeau P. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ Health Perspect. 2012;120(2):254–9.PubMedCrossRefGoogle Scholar
  199. 199.
    Basu R, Samet JM. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev. 2002;24(2):190–202.PubMedCrossRefGoogle Scholar
  200. 200.
    Kolokotroni M, Giannitsaris I, Watkins R. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Sol Energy. 2006;80(4):383–92.CrossRefGoogle Scholar
  201. 201.
    Smargiassi A, Fournier M, Griot C, Baudouin Y, Kosatsky T. Prediction of the indoor temperatures of an urban area with an in-time regression mapping approach. J Expo Sci Environ Epidemiol. 2008;18(3):282–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Stone B Jr. Urban sprawl and air quality in large US cities. J Environ Manag. 2008;86(4):688–98.CrossRefGoogle Scholar
  203. 203.
    Stone B, Hess JJ, Frumkin H. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environ Health Perspect. 2010;118(10):1425–8.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L. Neighborhood microclimates and vulnerability to heat stress. Soc Sci Med. 2006;63:2847–63.PubMedCrossRefGoogle Scholar
  205. 205.
    Wolf T, Chuang WC, McGregor G. On the science-policy bridge: do spatial heat vulnerability assessment studies influence policy? Int J Res Public Health. 2015;12:13321–49.CrossRefGoogle Scholar
  206. 206.
    Gachon P, Bussières L, Gosselin P, Raphoz M, Bustinza R, Martin P, et al. Guide to identifying alert thresholds for heat waves in Canada based on evidence. Co-edited by Université du Québec à Montréal, Environment and Climate Change Canada, Institut National de Santé Publique du Québec, and Health Canada, Montréal, Québec, Canada; 2016.Google Scholar
  207. 207.
    Bao J, Li X, Yu C. The construction and validation of the heat vulnerability index, a review. Int J Environ Res Public Health. 2015;12(7):7220–34.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Kuras ER, Richardson MB, Calkins MM, Ebi KL, Hess JJ, Kintziger KW, et al. Opportunities and challenges for personal heat exposure research. Environ Health Perspect. 2017;125(8):085001.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Quinn A, Tamerius JD, Perzanowski M, Jacobson JS, Goldstein I, Acosta L, Shaman J. Predicting indoor heat exposure risk during extreme heat events. Sci Total Environ. 2014;490:686–93.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    McLoed RS, Hopfe CJ, Kwan A. An investigation into future performance and overheating risks in Passivhaus dwellings. Build Environ. 2013;70:189–209.CrossRefGoogle Scholar
  211. 211.
    Oikonomou E, Davies M, Mavrogianni A, Biddulph P, Wilkinson P, Kolokotroni M. Modelling the relative importance of the urban heat island and the thermal quality of dwellings for overheating in London. Build Environ. 2012;57:223–38.CrossRefGoogle Scholar
  212. 212.
    Vellei M, Ramallo-González AP, Coley D, Lee J, Gabe-Thomas E, Lovett T, Natarajan S. Overheating in vulnerable and non-vulnerable households. Build Res Inf. 2017;45(1–2):102–18.CrossRefGoogle Scholar
  213. 213.
    Pogacar T, Znidarsic Z, Kajfez Bogataj L, Flouris AD, Poulianiti K, Crepinsek Z. Heat Waves occurrence and outdoor workers’ self-assessment of heat stress in Slovenia and Greece. Int J Environ Res Public Health. 2019;16(4)  https://doi.org/10.3390/ijerph16040597.PubMedCentralCrossRefPubMedGoogle Scholar
  214. 214.
    Piil JF, Lundbye-Jensen J, Christiansen L, Ioannou L, Tsoutsoubi L, Dallas CN, et al. High prevalence of hypohydration in occupations with heat stress-perspectives for performance in combined cognitive and motor tasks. PLoS One. 2018;13(10):e0205321.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–47.CrossRefGoogle Scholar
  216. 216.
    Arbury S, Jacklitsch B, Farquah O, Hodgson M, Lamson G, Martin H, Profitt A, Office of Occupational Health Nursing, Occupational Safety and Health Administration (OSHA). Heat illness and death among workers – United States, 2012–2013. MMWR Morb Mortal Wkly Rep. 2014;63(31):661–5.PubMedPubMedCentralGoogle Scholar
  217. 217.
    Gubernot DM, Anderson GB, Hunting KL. Characterizing occupational heat-related mortality in the United States, 2000–2010: an analysis using the Census of Fatal Occupational Injuries database. Am J Ind Med. 2015;58(2):203–11.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Kjellstrom T, Lemke B, Otto M, Hyatt O, Briggs D, Freyberg C. Threats to occupational health, labor productivity and the economy from increasing heat during climate change: an emerging global health risk and a challenge to sustainable development and social equity. Mapua: Health and Environment International Trust; 2014.Google Scholar
  219. 219.
    Kjellstrom T, Lemke B, Otto M, Hyatt OKD. Occupational heat stress: contribution to WHO project on “Global assessment of the health impacts of climate change”, which started in 2009. Mapua: Health and Environment International Trust; 2014.Google Scholar
  220. 220.
    American Conference of Governmental Industrial Hygienists. Heat stress and strain: TLV physical agents documentation. Cincinnati; 2007. https://doi.org/10.1175/BAMS-85-8-1067.CrossRefGoogle Scholar
  221. 221.
    ISO. Ergonomics of the thermal environment – analytical determination and interpretation of heat stress using calculation of the predicted heat strain (ISO 7933:2004). London: The British Standards Institution; 2004.Google Scholar
  222. 222.
    World Health Organisation. Health factors involved in working under conditions of heat stress. Technical report 412. WHO Scientific Group on Health Factors Involved in Working under Conditions of Heat Stress. Geneva, Switzerland; 1969. https://doi.org/10.1175/BAMS-85-8-1067.CrossRefGoogle Scholar
  223. 223.
    World Meteorological Organization, World Health Organization. Heatwaves and health: guidance on warning-system development. Geneva, Switzerland; 2015. https://doi.org/10.1175/BAMS-85-8-1067.CrossRefGoogle Scholar
  224. 224.
    Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.CrossRefGoogle Scholar
  225. 225.
    World Health Organization. International expert consultation on chronic kidney disease of unknown etiology. Colombo, Sri Lanka; 2016. https://doi.org/10.1175/BAMS-85-8-1067.CrossRefGoogle Scholar
  226. 226.
    Menon M, Resnick MI. Urinary lithiasis: etiology, diagnosis, and medical management. In: Walsh PC, Retik AB, Vaughan EDJ, Wein AJ, eds. Campbell’s urology. 8th ed. Philadelphia: WB Saunders; 2002:3229–3234.Google Scholar
  227. 227.
    Acute Kidney Injury Work Group. Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter. 2012;2(Suppl):1–138.Google Scholar
  228. 228.
    Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Outdoor temperature is associated with serum HDL and LDL. Environ Res. 2011;111(2):281–7.PubMedCrossRefGoogle Scholar
  229. 229.
    Vangelova K, Deyanov C, Ivanova M. Dyslipidemia in industrial workers in hot environments. Cent Eur J Public Health. 2006;14(1):15–7.PubMedCrossRefGoogle Scholar
  230. 230.
    de Freitas CR, Grigorieva EA. A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol. 2015;59(1):109–20.PubMedCrossRefGoogle Scholar
  231. 231.
    Budd GM. Wet-bulb globe temperature (WBGT)–its history and its limitations. J Sci Med Sport. 2008;11(1):20–32.PubMedCrossRefGoogle Scholar
  232. 232.
    d’Ambrosio Alfano FR, Palella BI, Riccio G. Thermal environment assessment reliability using temperature-humidity indices. Ind Health. 2011;49(1):95–106.PubMedCrossRefGoogle Scholar
  233. 233.
    D’Ambrosio Alfano FR, Palella BI, Riccio G. On the problems related to natural wet bulb temperature indirect evaluation for the assessment of hot thermal environments by means of WBGT. Ann Occup Hyg. 2012;56(9):1063–79.PubMedGoogle Scholar
  234. 234.
    Meade RD, Poirier MP, Flouris AD, Hardcastle SG, Kenny GP. Do the threshold limit values for work in hot conditions adequately protect workers? Med Sci Sports Exerc. 2016;48(6):1187–96.PubMedCrossRefGoogle Scholar
  235. 235.
    Ramsey JD, Chai CP. Inherent variability in heat-stress decision rules. Ergonomics. 1983;26(5):495–504.PubMedCrossRefGoogle Scholar
  236. 236.
    Lamarche DT, Meade RD, D’Souza AW, Flouris AD, Hardcastle SG, Sigal RJ, et al. The recommended Threshold Limit Values for heat exposure fail to maintain body core temperature within safe limits in older working adults. J Occup Environ Hyg. 2017;14(9):703–11.PubMedCrossRefGoogle Scholar
  237. 237.
    Cook EL. Epidemiological approach to heat trauma. Mil Med. 1955;116(5):317–22.PubMedCrossRefGoogle Scholar
  238. 238.
    Schickele E. Environment and fatal heat stroke; an analysis of 157 cases occurring in the Army in the U.S. during World War II. Mil Surg. 1947;100(3):235–56.PubMedGoogle Scholar
  239. 239.
    Dervis S, Coombs GB, Chaseling GK, Filingeri D, Smoljanic J, Jay O. A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. J Appl Physiol (1985). 2016;120(6):615–23.CrossRefGoogle Scholar
  240. 240.
    Quiller G, Krenz J, Ebi K, Hess JJ, Fenske RA, Sampson PD, et al. Heat exposure and productivity in orchards: implications for climate change research. Arch Environ Occup Health. 2017;72(6):313–6.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Maloney SK, Forbes CF. What effect will a few degrees of climate change have on human heat balance? Implications for human activity. Int J Biometeorol. 2011;55(2):147–60.PubMedCrossRefGoogle Scholar
  242. 242.
    Nybo L, Kjellstrom T, Bogataj LK, Flouris AD. Global heating: attention is not enough; we need acute and appropriate actions. Temperature (Austin). 2017;4(3):199–201.CrossRefGoogle Scholar
  243. 243.
    Intergovernmental Panel on Climate Change. Human health: impacts, adaptation, and co-benefits. In: climate change 2014 – impacts, adaptation and vulnerability: Part A: global and sectoral aspects: working group II contribution to the IPCC Fifth Assessment Report. Cambridge: Cambridge University Press; 2014. p. 709–754. doi: https://doi.org/10.1017/CBO9781107415379.016. Accessed 30 Apr 2019.
  244. 244.
    Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, et al. Heat effects on mortality in 15 European cities. Epidemiology. 2008;19(5):711–9.PubMedCrossRefGoogle Scholar
  245. 245.
    Kovats RS, Hajat S. Heat stress and public health: a critical review. Annu Rev Public Health. 2008;29:41–55.PubMedCrossRefGoogle Scholar
  246. 246.
    Wolf T, Martinez GS, Cheong HK, Williams E, Menne B. Protecting health from climate change in the WHO European Region. Int J Environ Res Public Health. 2014;11(6):6265–80.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Lowe D, Ebi KL, Forsberg B. Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health. 2011;8(12):4623–48.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Statistics BoL. The economics daily, work injuries in the heat in 2015. 2015.; https://www.bls.gov/opub/ted/2017/work-injuries-in-the-heat-in-2015.htm.
  249. 249.
    Mirabelli MC, Richardson DB. Heat-related fatalities in North Carolina. Am J Public Health. 2005;95(4):635–7.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Xiang J, Hansen A, Pisaniello D, Bi P. Extreme heat and occupational heat illnesses in South Australia, 2001–2010. Occup Environ Med. 2015;72(8):580–6.CrossRefGoogle Scholar
  251. 251.
    Axelson O. Influence of heat exposure on productivity. Work Environ Health. 1974;11(2):94–9.PubMedGoogle Scholar
  252. 252.
    Fogleman M, Fakhrzadeh L, Bernard TE. The relationship between outdoor thermal conditions and acute injury in an aluminum smelter. Int J Ind Ergonom. 2005;35(1):47–55.CrossRefGoogle Scholar
  253. 253.
    Kjellstrom T, Kovats RS, Lloyd SJ, Holt T, Tol RS. The direct impact of climate change on regional labor productivity. Arch Environ Occup Health. 2009;64(4):217–27.PubMedCrossRefGoogle Scholar
  254. 254.
    Zander KK, Botzen WJW, Oppermann E, Kjellstrom T, Garnett ST. Heat stress causes substantial labour productivity loss in Australia. Nat Clim Chang. 2015;5(7):647–51.CrossRefGoogle Scholar
  255. 255.
    The National Institute for Occupational Safety and Health. Occupational exposure to heat and hot environments: revised criteria 2016. Cincinnati, OH; 2016. https://doi.org/10.1175/BAMS-85-8-1067.CrossRefGoogle Scholar
  256. 256.
    American Conference of Governmental Industrial Hygienists. TLVs and BEIs based on the documentation of the threshold limit values for chemical substances and physical agents & biological exposure indices. Cincinnati, OH; 2017. https://doi.org/10.1175/BAMS-85-8-1067.CrossRefGoogle Scholar
  257. 257.
    Poirier MP, Meade RD, McGinn R, Friesen BJ, Hardcastle SG, Flouris AD, Kenny GP. The influence of arc-flash and fire-resistant clothing on thermoregulation during exercise in the heat. J Occup Environ Hyg. 2015;12(9):654–67.PubMedCrossRefGoogle Scholar
  258. 258.
    Notley SR, Flouris AD, Kenny GP. On the use of wearable physiological monitors to assess heat strain during occupational heat stress. Appl Physiol Nutr Metab. 2018;43(9):869–81.PubMedCrossRefGoogle Scholar
  259. 259.
    Buller MJ, Welles AP, Friedl KE. Wearable physiological monitoring for human thermal-work strain optimization. J Appl Physiol (1985). 2018;124(2):432–41.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Glen P. Kenny
    • 1
    Email author
  • Sean R. Notley
    • 1
  • Andreas D. Flouris
    • 2
  • Andrew Grundstein
    • 3
  1. 1.Human and Environmental Physiology Research UnitSchool of Human Kinetics, University of OttawaOttawaCanada
  2. 2.FAME Laboratory, Department of Exercise ScienceUniversity of Thessaly, KariesTrikalaGreece
  3. 3.Department of GeographyUniversity of GeorgiaAthensUSA

Personalised recommendations