Advertisement

Spatial Time Series Prediction Using Advanced BN Models—An Application Perspective

  • Monidipa DasEmail author
  • Soumya K. Ghosh
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 858)

Abstract

While the previous chapters keep focus on the working principles and performances of variants of enhanced BN models, this chapter presents the BN models from the perspective of various applications of spatial time series prediction. Eight different application domains including medical imaging, remote sensing , transportation, bio-informatics, homeland security, environment/ecology, finance/economy, etc. have been considered for this purpose. Later, the chapter also discusses on the synergism of enhanced BN models to handle more complex ST prediction scenarios in real life. We anticipate that the chapter will help researchers to find out several interesting research issues yet to be resolved and will also encourage them to further explore the intrinsic power of BNs to tackle the same.

References

  1. 1.
    Aburas, M.M., Ho, Y.M., Ramli, M.F., Ash’aari, Z.H.: The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. Int. J. Appl. Earth Obs. Geoinf. 52, 380–389 (2016)CrossRefGoogle Scholar
  2. 2.
    Al-sharif, A.A., Pradhan, B.: Spatio-temporal prediction of urban expansion using bivariate statistical models: assessment of the efficacy of evidential belief functions and frequency ratio models. Appl. Spat. Anal. Policy 9(2), 213–231 (2016)CrossRefGoogle Scholar
  3. 3.
    Bahram, M., Peay, K.G., Tedersoo, L.: Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 205(4), 1454–1463 (2015)CrossRefGoogle Scholar
  4. 4.
    Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A.C., Angell, H., Fredriksen, T., Lafontaine, L., Berger, A., et al.: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4), 782–795 (2013)CrossRefGoogle Scholar
  5. 5.
    Broennimann, O., Mráz, P., Petitpierre, B., Guisan, A., Müller-Schärer, H.: Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. J. Biogeogr. 41(6), 1126–1136 (2014)CrossRefGoogle Scholar
  6. 6.
    Cramb, S.M., Baade, P.D., White, N.M., Ryan, L.M., Mengersen, K.L.: Inferring lung cancer risk factor patterns through joint Bayesian spatio-temporal analysis. Cancer Epidemiol. 39(3), 430–439 (2015)CrossRefGoogle Scholar
  7. 7.
    Das, M., Ghosh, S.K.: Deep-STEP: a deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geosci. Remote Sens. Lett. 13(12), 1984–1988 (2016)CrossRefGoogle Scholar
  8. 8.
    Das, M., Ghosh, S.K.: BESTED: an exponentially smoothed spatial Bayesian analysis model for spatio-temporal prediction of daily precipitation. In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 55. ACM (2017)Google Scholar
  9. 9.
    Das, M., Ghosh, S.K.: A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 10(12), 5228–5236 (2017)CrossRefGoogle Scholar
  10. 10.
    Das, M., Ghosh, S.K.: Measuring Moran’s I in a cost-efficient manner to describe a land-cover change pattern in large-scale remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 10(6), 2631–2639 (2017)CrossRefGoogle Scholar
  11. 11.
    Das, M., Ghosh, S.K.: semBnet: a semantic Bayesian network for multivariate prediction of meteorological time series data. Pattern Recognit. Lett. 93, 192–201 (2017)CrossRefGoogle Scholar
  12. 12.
    Das, M., Ghosh, S.K.: Spatio-temporal autocorrelation analysis for regional land-cover change detection from remote sensing data. In: Proceedings of the Fourth ACM IKDD Conferences on Data Sciences, p. 8. ACM (2017)Google Scholar
  13. 13.
    Das, M., Ghosh, S.K.: Spatio-temporal prediction of meteorological time series data: an approach based on spatial Bayesian network (SpaBN). In: International Conference on Pattern Recognition and Machine Intelligence, pp. 615–622. Springer, Berlin (2017)Google Scholar
  14. 14.
    Das, M., Ghosh, S.K.: Spatio-temporal prediction under scarcity of influencing variables: a hybrid probabilistic graph-based approach. In: 2017 Ninth International Conference on Advances in Pattern Recognition (ICAPR), pp. 1–6. IEEE (2017)Google Scholar
  15. 15.
    Das, M., Ghosh, S.K.: Data-driven approaches for meteorological time series prediction: a comparative study of the state-of-the-art computational intelligence techniques. Pattern Recognit. Lett. 105, 155–164 (2018)CrossRefGoogle Scholar
  16. 16.
    Das, M., Ghosh, S.K.: Space-time prediction of high resolution raster data: an approach based on spatio-temporal Bayesian network (STBN). In: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, pp. 129–135. ACM (2019)Google Scholar
  17. 17.
    Das, M., Ghosh, S.K.: Reducing Parameter Value Uncertainty in Discrete Bayesian Network Learning: A Semantic Fuzzy Bayesian Approach. IEEE Transactions on Emerging Topics in Computational Intelligence (2019) [in press]. https://doi.org/10.1109/TETCI.2019.2939582
  18. 18.
    Das, M., Ghosh, S.K., Chowdary, V., Saikrishnaveni, A., Sharma, R.: A probabilistic nonlinear model for forecasting daily water level in reservoir. Water Resour. Manag. 30(9), 3107–3122 (2016)CrossRefGoogle Scholar
  19. 19.
    Das, M., Ghosh, S.K., Gupta, P., Chowdary, V.M., Nagaraja, R., Dadhwal, V.K.: FORWARD: A model for forecasting reservoir water dynamics using spatial Bayesian network (SpaBN). IEEE Transactions on Knowledge and Data Engineering 29(4), 842–855 (2017)CrossRefGoogle Scholar
  20. 20.
    Du, P., Xia, J., Du, Q., Luo, Y., Tan, K.: Evaluation of the spatio-temporal pattern of urban ecological security using remote sensing and GIS. Int. J. Remote Sens. 34(3), 848–863 (2013)CrossRefGoogle Scholar
  21. 21.
    Dubé, J., Legros, D.: A spatio-temporal measure of spatial dependence: an example using real estate data. Papers Reg. Sci. 92(1), 19–30 (2013)Google Scholar
  22. 22.
    Fairley, I., Smith, H.C., Robertson, B., Abusara, M., Masters, I.: Spatio-temporal variation in wave power and implications for electricity supply. Renew. Energy 114, 154–165 (2017)CrossRefGoogle Scholar
  23. 23.
    He, D., Dushoff, J., Eftimie, R., Earn, D.J.: Patterns of spread of influenza A in Canada. Proc. R. Soc. B: Biol. Sci. 280(1770), 20131174 (2013)CrossRefGoogle Scholar
  24. 24.
    Holly, S., Pesaran, M.H., Yamagata, T.: A spatio-temporal model of house prices in the USA. J. Econom. 158(1), 160–173 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Hormuth II, D.A., Weis, J.A., Barnes, S.L., Miga, M.I., Rericha, E.C., Quaranta, V., Yankeelov, T.E.: Predicting in vivo glioma growth with the reaction diffusion equation constrained by quantitative magnetic resonance imaging data. Phys. Biol. 12(4), 046006 (2015)CrossRefGoogle Scholar
  26. 26.
    Kang, H.W., Kang, H.B.: Prediction of crime occurrence from multi-modal data using deep learning. PloS One 12(4), e0176244 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kloog, I., Nordio, F., Zanobetti, A., Coull, B.A., Koutrakis, P., Schwartz, J.D.: Short term effects of particle exposure on hospital admissions in the Mid-Atlantic states: a population estimate. PloS One 9(2), e88578 (2014)CrossRefGoogle Scholar
  28. 28.
    Kuethe, T.H., Pede, V.O.: Regional housing price cycles: a spatio-temporal analysis using US state-level data. Reg. Stud. 45(5), 563–574 (2011)CrossRefGoogle Scholar
  29. 29.
    Lai, P.C., Chow, C.B., Wong, H.T., Kwong, K.H., Kwan, Y.W., Liu, S.H., Tong, W.K., Cheung, W.K., Wong, W.L.: An early warning system for detecting H1N1 disease outbreak-a spatio-temporal approach. Int. J. Geograph. Inform. Sci. 29(7), 1251–1268 (2015)CrossRefGoogle Scholar
  30. 30.
    Latombe, G., Fortin, D., Parrott, L.: Spatio-temporal dynamics in the response of woodland caribou and moose to the passage of grey wolf. J. Animal Ecol. 83(1), 185–198 (2014)CrossRefGoogle Scholar
  31. 31.
    Law, J., Quick, M., Chan, P.: Bayesian spatio-temporal modeling for analysing local patterns of crime over time at the small-area level. J. Quant. Criminol. 30(1), 57–78 (2014)CrossRefGoogle Scholar
  32. 32.
    Liu, Y., Lu, S., Chen, Y.: Spatio-temporal change of urban-rural equalized development patterns in China and its driving factors. J. Rural Stud. 32, 320–330 (2013)CrossRefGoogle Scholar
  33. 33.
    Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Trans. Intell. Transp. Syst. 17(2), 557–569 (2015)CrossRefGoogle Scholar
  34. 34.
    Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2014)Google Scholar
  35. 35.
    Morley, P.J., Donoghue, D.N., Chen, J.C., Jump, A.S.: Integrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distribution. Ecol. Inform. 43, 106–115 (2018)CrossRefGoogle Scholar
  36. 36.
    Rahman, A., Aggarwal, S.P., Netzband, M., Fazal, S.: Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE J. Sel. Top. Appl. Earth Obs. and Remote Sens. 4(1), 56–64 (2010)CrossRefGoogle Scholar
  37. 37.
    Rahman, M.M., Feng, Y., Yankeelov, T.E., Oden, J.T.: A fully coupled space-time multiscale modeling framework for predicting tumor growth. Comput. Methods Appl. Mech. Eng. 320, 261–286 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Salmon, B.P., Olivier, J.C., Wessels, K.J., Kleynhans, W., Van den Bergh, F., Steenkamp, K.C.: Unsupervised land cover change detection: meaningful sequential time series analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 4(2), 327–335 (2010)CrossRefGoogle Scholar
  39. 39.
    Sankarasubramanian, A., Sabo, J., Larson, K., Seo, S., Sinha, T., Bhowmik, R., Vidal, A.R., Kunkel, K., Mahinthakumar, G., Berglund, E., et al.: Synthesis of public water supply use in the united states: Spatio-temporal patterns and socio-economic controls. Earth’s Future 5(7), 771–788 (2017)CrossRefGoogle Scholar
  40. 40.
    Scheepens, R., Hurter, C., Van De Wetering, H., Van Wijk, J.J.: Visualization, selection, and analysis of traffic flows. IEEE Trans. Vis. Comput. Graph. 22(1), 379–388 (2015)CrossRefGoogle Scholar
  41. 41.
    Schuessele, C., Hoernstein, S.N., Mueller, S.J., Rodriguez-Franco, M., Lorenz, T., Lang, D., Igloi, G.L., Reski, R.: Spatio-temporal patterning of arginyl-tRNA protein transferase (ATE) contributes to gametophytic development in a moss. New Phytol. 209(3), 1014–1027 (2016)CrossRefGoogle Scholar
  42. 42.
    Smith, T.E., Wu, P.: A spatio-temporal model of housing prices based on individual sales transactions over time. J. Geograph. Syst. 11(4), 333 (2009)CrossRefGoogle Scholar
  43. 43.
    Subasinghe, S., Estoque, R., Murayama, Y.: Spatiotemporal analysis of urban growth using GIS and remote sensing: a case study of the Colombo metropolitan area, Sri Lanka. ISPRS Int. J. Geo-Inf. 5(11), 197 (2016)CrossRefGoogle Scholar
  44. 44.
    Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting: where we are and where we’re going. Transp. Res. Part C: Emerg. Technol. 43, 3–19 (2014)CrossRefGoogle Scholar
  45. 45.
    Wu, Y.J., Chen, F., Lu, C.T., Yang, S.: Urban traffic flow prediction using a spatio-temporal random effects model. J. Intell. Transp. Syst. 20(3), 282–293 (2016)CrossRefGoogle Scholar
  46. 46.
    Yang, X., Liu, Z.: Use of satellite-derived landscape imperviousness index to characterize urban spatial growth. Comput. Environ. Urban Syst. 29(5), 524–540 (2005)CrossRefGoogle Scholar
  47. 47.
    Zhang, S., Zhou, J., Hu, H., Gong, H., Chen, L., Cheng, C., Zeng, J.: A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 44(4), e32–e32 (2015)CrossRefGoogle Scholar
  48. 48.
    Zheng, L., Yang, H.L., Bi, Z.W., Kou, Z.Q., Zhang, L.Y., Zhang, A.H., Yang, L., Zhao, Z.T.: Epidemic characteristics and spatio-temporal patterns of scrub typhus during 2006–2013 in Tai’an, Northern China. Epidemiol. Infect. 143(11), 2451–2458 (2015)CrossRefGoogle Scholar
  49. 49.
    Zhuang, Y., Almeida, M., Morabito, M., Ding, W.: Crime hot spot forecasting: a recurrent model with spatial and temporal information. In: 2017 IEEE International Conference on Big Knowledge (ICBK), pp. 143–150. IEEE (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations